This paper addresses the performance of the Artificial Neural Networks (ANNs), Fuzzy inference systems (FISs) and Adaptive Neuro-Fuzzy Inference System (ANFIS) for the identification of some nonlinear systems with certain degree of uncertainty. The efficiency of the suggested methods in modeling and identification the responses were analyzed and compared. The Back-propagation algorithm and Takagi-Sugeno (TS) approach are used to train the ANNs, FISs and ANFIS, respectively. In this study we will show how ANFIS can be put in order to form nets that able to train from external data and information compared to ANNs and FISs. In order, it is proposed forms of inputs that can be used along with ANNs, FISs and ANFIS to modeling nonlinear systems. Two nonlinear systems with an electrocardiogram (ECG) signal in the form of simulation and complexity were used to test the identification of the structure presented. Because ANFIS has an inherent capacity to approximate unknown functions and to adjust the changes in inputs and parameters, it can be used to identify the proposed systems with a very high level of complexity. The results show that the ANFIS technique can provide the most ideal approximation when the right structures are employed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.