Due to environmental and fuel cost concerns more and more wind-and solar-based generation units are embedded in distribution networks (DNs). However, a part of such an embedded generation would be curtailed due to system constraints and variations of the energy penetration. This part of energy can be recovered by introducing energy storage systems (ESSs) and an optimal dispatch of both active and reactive powers. Therefore, we propose a combined problem formulation for active-reactive optimal power flow (A-R-OPF) in DNs with embedded wind generation and battery storage. The solution provides an optimal operation strategy which ensures the feasibility and enhances the profit significantly. Results of a 41-bus distribution network are presented. It can be demonstrated that more than 12% of energy losses and a large amount of reactive energy to be imported from the transmission network (TN) can be reduced using the proposed approach in comparison to the operation strategy where only active OPF is considered.Index Terms-Battery management systems, combined activereactive optimal power flow (A-R-OPF), distributed power generation.
NOMENCLATURE
FunctionsTotal yield from wind power and battery storage systems (BSSs).Total cost of energy losses.
ParametersImaginary component of the complex admittance matrix elements.Energy price during hour .Installed capacity of BSS .Upper bound of energy in BSS .Lower bound of energy in BSS .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.