Diffraction techniques can powerfully and nondestructively probe materials while maintaining high resolution in both space and time. Unfortunately, these characterizations have been limited and sometimes even erroneous due to the difficulty of decoding the desired material information from features of the diffractograms. Currently, these features are identified non-comprehensively via human intuition, so the resulting models can only predict a subset of the available structural information. In the present work we show (i) how to compute machine-identified features that fully summarize a diffractogram and (ii) how to employ machine learning to reliably connect these features to an expanded set of structural statistics. To exemplify this framework, we assessed virtual electron diffractograms generated from atomistic simulations of irradiated copper. When based on machine-identified features rather than human-identified features, our machine-learning model not only predicted one-point statistics (i.e. density) but also a two-point statistic (i.e. spatial distribution) of the defect population. Hence, this work demonstrates that machine-learning models that input machine-identified features significantly advance the state of the art for accurately and robustly decoding diffractograms.
Recent work has demonstrated the potential of convolutional neural networks (CNNs) in producing low-computational cost surrogate models for the localization of mechanical fields in two-phase microstructures. The extension of the same CNNs to polycrystalline microstructures is hindered by the lack of an efficient formalism for the representation of the crystal lattice orientation in the input channels of the CNNs. In this paper, we demonstrate the benefits of using generalized spherical harmonics (GSH) for addressing this challenge. A CNN model was successfully trained to predict the local plastic velocity gradient fields in polycrystalline microstructures subjected to a macroscopically imposed loading condition. Specifically, it is demonstrated that the proposed approach improves significantly the accuracy of the CNN models, when compared with the direct use of Bunge-Euler angles to represent the crystal orientations in the input channels. Since the proposed approach implicitly satisfies the expected crystal symmetries in the specification of the input microstructure to the CNN, it opens new research directions for the adoption of CNNs in addressing a broad range of polycrystalline microstructure design and optimization problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.