The objective of this study was to provide information on the histological characteristics of the gonads of male and female Armases rubripes crabs, and to try to establish a relationship between the microscopic and macroscopic stages previously identified. Thirty-six crabs were collected by hand between February 2003 and January 2004 in banks of Spartina alterniflora on Sahy Beach in Mangaratiba, Rio de Janeiro state, Brazil. The histological analysis of the ovaries of A. rubripes demonstrated a gradual process of development of the oocytes. According to their cellular characteristics, five types of cells were distinguished: oogonia, oocyte I, oocyte II, oocyte III and oocyte IV. The ovaries showed four stages during gonadal activity: stage I (rudimentary), stage II (developing or maturing), stage III (developed or mature) and stage IV (resting). The results of the histochemical analyses showed that the ovaries vary according to the gonad development stage. The histological aspect of one section of the male gonad was always the same in all of the seminiferous tubules, where the lumen of these tubules always contained spermatozoa and/or spermatids. It was not possible to characterize the three stages of gonad development in the males. This agrees with previous reports in the literature. However, in the females there was a relationship between the gonad stages distinguished macroscopically and the results obtained through the histological and histochemical analysis, due to the presence of different cell types, as well as the lysis process and reabsorption of the oocytes in spent females.Keywords: crab, gonadal development, histochemistry, Sesarmidae. Análise histológica e histoquímica do desenvolvimento gonadal de machos e fêmeas deArmases rubripes (Rathbun, 1897) (Crustacea, Brachyura, Sesarmidae)
Gill anomalies in three common fish species of different taxonomic order, habitat dwelling and feeding habits (one Characiformes, Oligosarcus hepsetus; one Siluriformes, Hypostomus auroguttatus; and one Perciformes, Geophagus brasiliensis) from a eutrophized tropical river in south-eastern in Brazil were compared. The aim of this study was to search for sentinel species that could be used as potential biomarkers of environmental quality. Most fish had gills with histological changes, namely epithelial lifting, interstitial oedema, leucocyte infiltration, hyperplasia of the epithelial cells, lamellar fusion, vasodilatation and necrosis. On the other hand, lamellar blood congestion and lamellar aneurysm, which are more serious and often irreversible changes, were recorded for the water column carnivorous O. hepsetus and, to a lesser extent, for the bottom-dwelling detritivorous H. auroguttatus. A histopathological alteration index (HAI) based on the occurrence and severity of gills anomalies indicated that O. hepsetus (mean score = 11.4) had significantly higher values (Kruskall-Wallis H(2,41) = 15.95, P = 0.0003) compared with G. brasiliensis (mean score = 7.0). Overall, the omnivorous G. brasiliensis had comparatively lesser occurrence of most gill anomalies compared with other two species, being less suitable as biomarker of environmental quality. In contrast, the water column-dweller O. hepsetus (water column) and the bottom-dweller H. auroguttatus had gills most susceptible to changes, making them more suitable for using as histological biomarkers of the environmental quality in entrophized tropical rivers.
SUMMARY:The ontogenesis of the gastroesophageal mucosa involves morphological alterations related to its structure and the function of each segment. The present study describes the histogenesis of the mucus-secreting epithelium and glands of the esophagus, gizzard, and proventriculus of the chicken (Gallus gallus), and identifies alterations in the secretion pattern of glycosaminoglycans (GAG's). We analyzed 38 chicken embryos, processed the material collected following the histological routine, and then stained it with hematoxylin-eosin for the analysis of tissue structure and with Gomori's trichrome for the identification of conjunctive tissue and collagen fibers. We used the PAS histochemical technique for the analysis of neutral GAG's and the AB pH 2.5 histochemical technique for the analysis of acid GAG's. The embryos at late stage of development had the esophagus wall composed of four layers: mucosa, submucosa, muscularis, and serosa, whereas the proventriculus and the gizzard were composed of three layers: mucosa, muscularis, and serosa. In all three segments, we identified the superficial epithelium as mucus-secreting; in the esophagus this epithelium was mucussecreting only at the initial development stages. The proventricular glands began to form at the initial development stages, whereas the tubular glands began to form in the gizzard just after the 15th day. The differences in the production of GAG's in these regions of the digestive tract are related to development stages, functions, and physiological requirements of each segment, and to the gradual adjustment of the body to the post-hatching life.
AIM:To describe the histology of the digestive tract and to investigate the occurrence of endocrine cells in Oligosarcus hepsetus (O. hepsetus ). METHODS:The digestive tract (DT) of O. hepsetus was divided into esophagus, two stomach regions (glandular and non-glandular) and two intestinal regions (anterior and posterior). These specimens were processed by routine histological techniques and stained with hematoxylin-eosin, Gomori's trichrome, periodic acid Schiff (PAS) and Alcian blue (AB). An immunohistochemical method using avidin-biotin-peroxidase was employed. RESULTS:The esophagus is lined with a non-keratinized stratified squamous epithelium that is reactive to PAS and AB. The stomach has a mucosa lined with a simple columnar epithelium with mucus-secreting cells that are reactive only to PAS. The intestine has a simple columnar epithelium with a brush border and goblet cells that are reactive to PAS and AB. Somatostatin, serotonin and cholecystokinin immunoreactive cells were identified throughout the DT. CONCLUSION:This study revealed adaptations for the species' diet and showed that the distribution and relative frequency of immunoreactive cells are similar to those of other fish.
Nicolau, C.F., Nascimento, A.A., Machado‐Santos, C., Sales, A. and Oshiro, L.M.Y. 2011. Gonads of males and females of the mangrove tree crab Aratus pisonii (Grapsidae: Brachyura: Decapoda): a histological and histochemical view. —Acta Zoologica (Stockholm) 00:1–9. This study describes the microscopic anatomy of the male and female gonads and the spermatogenesis and oogenesis of the mangrove tree crab Aratus pisonii. Males and females were captured in a mangrove marsh in Guaratiba (23°04′S, 44°10′W), Rio de Janeiro State, Brazil. The testes are composed of spermatogonia I (7.82 ± 0.84 μm), spermatogonia II (6.12 ± 0.72 μm), spermatocytes I (5.62 ± 0.71 μm), spermatocytes II (5.00 ± 0.42 μm), spermatids (4.01 ± 0.33 μm), and spermatozoa (2.58 ± 0.18 μm). The spermatozoids are sent to the vas deferens, which is divided into three regions: anterior vas deferens, middle vas deferens and posterior vas deferens. There are no indications of development as the production of male gametes was continuous throughout the study period. In the females, there are four ovary development stages: previtellogenesis, early‐stage vitellogenesis, mature vitellogenesis, and postspawning. Five types of cells were found in the gonads: oogonia (5.23 ± 1.31 μm), oocytes in early development (19.84 ± 5.16 μm), previtellogenic oocytes (49.49 ± 6.87 μm), vitellogenic oocytes (87.51 ± 10.23 μm), and mature oocytes (174.78 ± 29.46 μm). The findings of this study indicate that A. pisonii females lay eggs on multiple occasions throughout the study period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.