<p>The Sixth Assessment Report from the Intergovernmental Panel on Climate Change emphasized on the water cycle, and water-related disasters (i.e., water scarcity, droughts, floods) that impact all sectors and regions. Therefore, assessing future water availability is critical to develop mitigation strategies and formulate adaptation policies. While developing relevant information systems, it is critical to ensure the involvement of stakeholders in the field of policy development, communities impacted by future water availability (e.g., agriculture, fisheries, shipping industry), and private industries (e.g., paper and pulp, hydropower) to ensure that information presented can be useful to support decision making. Destination Earth (DestinE) aims to, among other products, to develop &#8211; on a global scale &#8211; a highly accurate digital model of the Earth to monitor and predict the interaction between natural phenomena and human activities. As part of the European Commission&#8217;s Green Deal and Digital Strategy, DestinE will contribute to achieving the objectives of the twin transition, green and digital.</p> <p>&#160;</p> <p>High resolution climate simulations (ICON and IFS climate models) are used as meteorological forcings for the mesoscale Hydrological Model (mHM) to produce high temporal (1 hour) and spatial resolution (5 km) streamflow estimates at a global scale. The impact model consists of the mHM model, which includes key hydrological processes e.g., run-off, soil moisture dynamics, fast and slow interflow processes to estimate river discharge. The application prototype will provide: 1) co-designing the indicators and indices as well as application functionalities together with relevant stakeholders. 2) downscaling of the essential climate variables 3) providing bias correction for the climate variables 4) running the mHM model under various climate scenarios. In addition, the application will receive data through direct streaming from the climate simulations thus ensuring interactivity of the application for the users.</p> <p>&#160;</p> <p>During the development phase of the DestinE digital twin, the climate simulations used in the current work are taken from the results of the NextGEMS project. They have been used to provide a proof of concept for the mHM model, and provide initial results for stakeholder engagement, and enable early involvement of stakeholders in the co-design of relevant applications.</p>
This study focuses on the impact of infiltration rates on colloidal transport and reactive processes associated with E. faecalis JH2-2 using water-saturated sediment columns. The infiltration rates influence the physical transport of bacteria by controlling the mean flow velocity. This, in turn, impacts biological processes in pore water owing to the higher or lower residence time of the bacteria in the column. In the present study, continuous injection of E. faecalis (suspended in saline water with varying conditions of dissolved oxygen and nutrient concentrations) into a lab-scale sediment column was performed at flow velocities of 0.02 cm min−1 and 0.078 cm min−1, i.e., at residence times of 1–5 hours. The impact of residence times on reactive processes is significant for field scale setups. A process-based model with a first-order rate coefficient for each biological process was fitted for each obtained condition-specific dataset from the experimental observations (breakthrough curves). The coefficients were converted to a dimensionless form to facilitate the comparison of biological processes. These results indicate that the processes of attachment and growth were flow-dependent. The growth process in the absence of dissolved oxygen was the most dominant process, with a Damkoehler number of approximately 48.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.