For biosimilar drug development programs, it is essential to demonstrate that there are no clinically significant differences between the proposed biosimilar therapeutic (biosimilar) and its reference product (originator). Based on a stepwise comprehensive comparability exercise, the biosimilar must demonstrate similarity to the originator in physicochemical characteristics, biological activity, pharmacokinetics, efficacy, and safety, including immunogenicity. The goal of the immunogenicity assessment is to evaluate potential differences between the proposed biosimilar product and the originator product in the incidence and severity of human immune responses. Establishing that there are no clinically meaningful differences in the immune response between the products is a key element in the demonstration of biosimilarity. An issue of practical, regulatory, and financial importance is to establish whether a two-assay (based on the biosimilar and originator respectively) or a one-assay approach (based on the biosimilar) is optimal for the comparative immunogenicity assessment. This paper recommends the use of a single, biosimilar-based assay for assessing immunogenic similarity in support of biosimilar drug development. The development and validation of an ADA assay used for a biosimilar program should include all the assessments recommended for an innovator program (10-16, 29). In addition, specific parameters also need to be evaluated, to gain confidence that the assay can detect antibodies against both the biosimilar and the originator. Specifically, the biosimilar and the originator should be compared in antigenic equivalence, to assess the ability of the biosimilar and the originator to bind in a similar manner to the positive control(s), as well as in the confirmatory assay and drug tolerance experiments. Practical guidance for the development and validation of anti-drug antibody (ADA) assays to assess immunogenicity of a biosimilar in comparison to the originator, using the one-assay approach, are described herein.
Abstract. For biosimilar drug development, it is critical to demonstrate similar physiochemical characteristics, efficacy, and safety of the biosimilar product compared to the reference product. Therefore, pharmacokinetic (PK) and immunogenicity (antidrug antibody, ADA) assays that allow for the demonstration of biosimilarity are critical. Under the auspices of the American Association of Pharmaceutical Scientists (AAPS) Ligand-Binding Assay Bioanalytical Focus Group (LBABFG), a Biosimilars Action Program Committee (APC) was formed in 2011. The goals of this Biosimilars APC were to provide a forum for in-depth discussions on issues surrounding the development and validation of PK and immunogenicity assays in support of biosimilar drug development and to make recommendations thereof. The Biosimilars APC's recommendations for the development and validation of ligand-binding assays (LBAs) to support the PK assessments for biosimilar drug development are presented here. Analytical recommendations for the development and validation of LBAs to support immunogenicity assessments will be the subject of a separate white paper.
Abstract. The American Association of Pharmaceutical Scientists (AAPS) biosimilar focus group on nonclinical and clinical assays has developed this manuscript to guide the industry on best practices and testing strategies when developing neutralizing antibody (NAb) assays for biosimilar programs. The immunogenicity assessment to biosimilar and originator drug products is one of the key aspects of clinical programs for biosimilars to demonstrate biosimilarity. Establishing that there are no clinically meaningful differences in immune response between a proposed product and the originator product is a key element in the demonstration of biosimilarity. It is critical to collect, evaluate, and compare the safety and immunogenicity data from the clinical pharmacology, safety, and/or efficacy studies especially when the originator drug product is known to have potential for immune-mediated toxicity. This manuscript aims to provide a comprehensive review and recommendations on assay formats, critical reagents, approaches to method development, and validation of the neutralizing antibody assays in extrapolation within the scope of biosimilar drug development programs. Even if there are multiple options on the development and validation of NAb assays for biosimilar programs, the type of drug and its MoA will help determine the assay format and technical platform for NAb assessment (e.g., cell-based or non-cell-based assay). We recommend to always perform a one-assay approach as it is better to confirm the biosimilarity using one-assay for NAb. If a one-assay approach is not feasible, then a twoassay format may be used. This manuscript will provide all the details necessary to develop NAb assays for biosimilars.
In the published article, the author B. Babbitt was cited as affiliation 9, but should have been cited as affiliation 2. In addition, there are 2 errors in the affiliations. The correct affiliations are shown in this erratum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.