Clinical applications of precision oncology require accurate tests that can distinguish true cancer specific mutations from errors introduced at each step of next-generation sequencing (NGS). To date, no bulk sequencing study has addressed the effects of cross-site reproducibility, nor the biological, technical and computational factors that influence variant identification. Here we report a systematic interrogation of somatic mutations in paired tumor-normal cell lines to identify factors affecting detection reproducibility and accuracy at six different centers. Using whole genome sequencing (WGS) and whole-exome sequencing (WES), we evaluated the reproducibility of different sample types with varying input amount and tumor purity, and multiple library construction protocols, followed by processing with nine bioinformatics pipelines. We found that read coverage and callers affected both WGS and WES reproducibility, but WES performance was influenced by insert fragment size, genomic copy content and the global imbalance score (GIV; G > T/C > A). Finally, taking into account library preparation protocol, tumor content, read coverage and bioinformatics processes concomitantly, we recommend actionable practices to improve the reproducibility and accuracy of NGS experiments for cancer mutation detection.
Heterodera glycines, the soybean cyst nematode (SCN), causes the most damaging chronic disease of soybean (Glycine max). Host resistance requires the resistance allele at rhg1. Resistance destroys the giant cells created in the plant's roots by the nematodes about 24 to 48 h after commencement of feeding. In addition, 4 to 8 d later, a systemic acquired resistance develops that discourages later infestations. The molecular mechanisms that control the rhg1-mediated resistance response appear to be multigenic and complex, as judged by transcript abundance changes, even in near isogenic lines (NILs). This study aimed to focus on key posttranscriptional changes by identifying proteins and metabolites that were increased in abundance in both resistant and susceptible NILs. Comparisons were made among NILs 10 d after SCN infestation and without SCN infestation. Two-dimensional gel electrophoresis resolved more than 1,000 protein spots on each gel. Only 30 protein spots with a significant (P , 0.05) difference in abundance of 1.5-fold or more were found among the four treatments. The proteins in these spots were picked, trypsin digested, and analyzed using quadrupole time-of-flight tandem mass spectrometry. Protein identifications could be made for 24 of the 30 spots. Four spots contained two proteins, so that 28 distinct proteins were identified. The proteins were grouped into six functional categories. Metabolite analysis by gas chromatography-mass spectrometry identified 131 metabolites, among which 58 were altered by one or more treatment; 28 were involved in primary metabolism. Taken together, the data showed that 17 pathways were altered by the rhg1 alleles. Pathways altered were associated with systemic acquired resistance-like responses, including xenobiotic, phytoalexin, ascorbate, and inositol metabolism, as well as primary metabolisms like amino acid synthesis and glycolysis. The pathways impacted by the rhg1 allelic state and SCN infestation agreed with transcript abundance analyses but identified a smaller set of key proteins. Six of the proteins lay within the same small region of the interactome identifying a key set of 159 interacting proteins involved in transcriptional control, nuclear localization, and protein degradation. Finally, two proteins (glucose-6-phosphate isomerase [EC 5.3.1.9] and isoflavone reductase [EC 1.3.1.45]) and two metabolites (maltose and an unknown) differed in resistant and susceptible NILs without SCN infestation and may form the basis of a new assay for the selection of resistance to SCN in soybean.
BackgroundTo obtain information on cardiovascular morbidity, hypertension control, anemia and mineral metabolism based on the analysis of the baseline characteristics of a large cohort of Spanish patients enrolled in an ongoing prospective, observational, multicenter study of patients with stages 3 and 4 chronic kidney diseases (CKD).MethodsMulticenter study from Spanish government hospital-based Nephrology outpatient clinics involving 1129 patients with CKD stages 3 (n = 434) and 4 (n = 695) defined by GFR calculated by the MDRD formula. Additional analysis was performed with GFR calculated using the CKD-EPI and Cockcroft-Gault formula.ResultsIn the cohort as a whole, median age 70.9 years, morbidity from all cardiovascular disease (CVD) was very high (39.1%). In CKD stage 4, CVD prevalence was higher than in stage 3 (42.2 vs 35.6% p < 0.024). Subdividing stage 3 in 3a and 3b and after adjusting for age, CVD increased with declining GFR with the hierarchy (stage 3a < stage 3b < stage 4) when calculated by CKD-EPI (31.8, 35.4, 42.1%, p 0.039) and Cockcroft-Gault formula (30.9, 35.6, 43.4%, p 0.010) and MDRD formula (32.5, 36.2, 42.2%,) but with the latter, it did not reach statistical significance (p 0.882). Hypertension was almost universal among those with stages 3 and 4 CKD (91.2% and 94.1%, respectively) despite the use of more than 3 anti-hypertensive agents including widespread use of RAS blockers. Proteinuria (> 300 mg/day) was present in more than 60% of patients and there was no significant differences between stages 3 and 4 CKD (1.2 ± 1.8 and 1.3 ± 1.8 g/day, respectively). A majority of the patients had hemoglobin levels greater than 11 g/dL (91.1 and 85.5% in stages 3 and 4 CKD respectively p < 0.001) while the use of erythropoiesis-stimulating agents (ESA) was limited to 16 and 34.1% in stages 3 and 4 CKD respectively. Intact parathyroid hormone (i-PTH) was elevated in stage 3 and stage 4 CKD patients (121 ± 99 and 166 ± 125 pg/mL p 0.001) despite good control of calcium-phosphorus levels.ConclusionThis study provides an overview of key clinical parameters in patients with CKD Stages 3 and 4 where delivery or care was largely by nephrologists working in a network of hospital-based clinics of the Spanish National Healthcare System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.