We investigated whether levels of reading ability attained through formal literacy are related to anticipatory language-mediated eye movements. Indian low and high literates listened to simple spoken sentences containing a target word (e.g., "door") while at the same time looking at a visual display of four objects (a target, i.e. the door, and three distractors). The spoken sentences were constructed in such a way that participants could use semantic, associative, and syntactic information from adjectives and particles (preceding the critical noun) to anticipate the visual target objects. High literates started to shift their eye gaze to the target objects well before target word onset. In the low literacy group this shift of eye gaze occurred only when the target noun (i.e. "door") was heard, more than a second later. Our findings suggest that formal literacy may be important for the fine-tuning of language-mediated anticipatory mechanisms, abilities which proficient language users can then exploit for other cognitive activities such as spoken language-mediated eye gaze. In the conclusion, we discuss three potential mechanisms of how reading acquisition and practice may contribute to the differences in predictive spoken language processing between low and high literates.
Greenhouse experiments were conducted to assess the effects of soil salinity on emergence, growth, water status, proline content and mineral accumulation of seedlings of Holoptelea integrifolia (Roxb.) Planch (Ulmaceae). NaCl was added to the soil and salinity was maintained at 0.3, 3.9, 6.0, 7.9, 10.0, 12.1 and 13.9 dS/m. Salinity caused reduction in water potential of tissues, which resulted in internal water deficit to plants. Consequently, seedling growth significantly decreased with increase in soil salinity. Proline content in tissues increased with increase in soil salinity. There were no effective mechanisms to control net uptake of Na transport to shoot tissue. Potassium content increased in leaves to avoid Na toxicity to this tissue. Nitrogen content significantly increased in tissues in response to salinity. Phosphorus, calcium and magnesium content in tissues significantly decreased as salinity increased. Changes in tissues and whole-plant accumulation patterns of other nutrients, as well as possible mechanisms to avoid Na toxicity in this species in response to salinity, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.