The biological impact of Rho depends critically on the precise subcellular localization of its active, GTP-loaded form. This can potentially be determined by the balance between molecules that promote nucleotide exchange or GTP hydrolysis. However, how these activities may be coordinated is poorly understood. We now report a molecular pathway that achieves exactly this coordination at the epithelial zonula adherens. We identify an extramitotic activity of the centralspindlin complex, better understood as a cytokinetic regulator, which localizes to the interphase zonula adherens by interacting with the cadherin-associated protein, α-catenin. Centralspindlin recruits the RhoGEF, ECT2, to activate Rho and support junctional integrity through myosin IIA. Centralspindlin also inhibits the junctional localization of p190 B RhoGAP, which can inactivate Rho. Thus, a conserved molecular ensemble that governs Rho activation during cytokinesis is used in interphase cells to control the Rho GTPase cycle at the zonula adherens.
WAVE2–Arp2/3 is a major nucleator of actin assembly at the zonula adherens and likely acts in response to junctional Rac signaling. It supports myosin II recruitment to, and tension generation at, the junction.
N-WASP is a major cytoskeletal regulator that stimulates Arp2/3-mediated actin nucleation. Here, we identify a nucleation-independent pathway by which N-WASP regulates the cytoskeleton and junctional integrity at the epithelial zonula adherens. N-WASP is a junctional protein whose depletion decreased junctional F-actin content and organization. However, N-WASP (also known as WASL) RNAi did not affect junctional actin nucleation, dominantly mediated by Arp2/3. Furthermore, the junctional effect of N-WASP RNAi was rescued by an N-WASP mutant that cannot directly activate Arp2/3. Instead, N-WASP stabilized newly formed actin filaments and facilitated their incorporation into apical rings at the zonula adherens. A major physiological effect of N-WASP at the zonula adherens thus occurs through a non-canonical pathway that is distinct from its capacity to activate Arp2/3. Indeed, the junctional impact of N-WASP was mediated by the WIP-family protein, WIRE, which binds to the N-WASP WH1 domain. We conclude that N-WASP-WIRE serves as an integrator that couples actin nucleation with the subsequent steps of filament stabilization and organization necessary for zonula adherens integrity.
Classical cadherin adhesion receptors influence tissue integrity in health and disease. Their biological function is intimately linked to the actin cytoskeleton. To date, research has largely focused on identifying the molecular mechanisms that physically couple cadherin to cortical actin filaments. However, the junctional cytoskeleton is dynamic. Recent developments in understanding how filament dynamics and organization in the junctional cytoskeleton are controlled provide new insights into how the actin cytoskeleton regulates cadherin junctions in health and disease.
Drosophila melanogaster plasmatocytes, the phagocytic cells among hemocytes, are essential for immune responses, but also play key roles from early development to death through their interactions with other cell types. They regulate homeostasis and signaling during development, stem cell proliferation, metabolism, cancer, wound responses, and aging, displaying intriguing molecular and functional conservation with vertebrate macrophages. Given the relative ease of genetics in Drosophila compared to vertebrates, tools permitting visualization and genetic manipulation of plasmatocytes and surrounding tissues independently at all stages would greatly aid a fuller understanding of these processes, but are lacking. Here, we describe a comprehensive set of transgenic lines that allow this. These include extremely brightly fluorescing mCherry-based lines that allow GAL4-independent visualization of plasmatocyte nuclei, the cytoplasm, or the actin cytoskeleton from embryonic stage 8 through adulthood in both live and fixed samples even as heterozygotes, greatly facilitating screening. These lines allow live visualization and tracking of embryonic plasmatocytes, as well as larval plasmatocytes residing at the body wall or flowing with the surrounding hemolymph. With confocal imaging, interactions of plasmatocytes and inner tissues can be seen in live or fixed embryos, larvae, and adults. They permit efficient GAL4-independent Fluorescence-Activated Cell Sorting (FACS) analysis/sorting of plasmatocytes throughout life. To facilitate genetic studies of reciprocal signaling, we have also made a plasmatocyte-expressing QF2 line that, in combination with extant GAL4 drivers, allows independent genetic manipulation of both plasmatocytes and surrounding tissues, and GAL80 lines that block GAL4 drivers from affecting plasmatocytes, all of which function from the early embryo to the adult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.