The present study explores the use of carbon dots coated with Iron (II, III) oxide (Fe3O4) for its application as an anode in microbial fuel cells (MFC). Fe3O4@PSA-C was synthesized using a hydrothermal-assisted probe sonication method. Nanoparticles were characterized with XRD, SEM, FTIR, and RAMAN Spectroscopy. Different concentrations of Fe3O4- carbon dots (0.25, 0.5, 0.75, and 1 mg/cm2) were coated onto the graphite sheets (Fe3O4@PSA-C), and their performance in MFC was evaluated. Cyclic voltammetry (CV) of Fe3O4@PSA-C (1 mg/cm2) modified anode indicated oxidation peaks at −0.26 mV and +0.16 mV, respectively, with peak currents of 7.7 mA and 8.1 mA. The fluxes of these anodes were much higher than those of other low-concentration Fe3O4@PSA-C modified anodes and the bare graphite sheet anode. The maximum power density (Pmax) was observed in MFC with a 1 mg/cm2 concentration of Fe3O4@PSA-C was 440.01 mW/m2, 1.54 times higher than MFCs using bare graphite sheet anode (285.01 mW/m2). The elevated interaction area of carbon dots permits pervasive Fe3O4 crystallization providing enhanced cell attachment capability of the anode, boosting the biocompatibility of Fe3O4@PSA-C. This significantly improved the performance of the MFC, making Fe3O4@PSA-C modified graphite sheets a good choice as an anode for its application in MFC.
In microbial electrochemical systems, microorganisms catalyze chemical reactions converting chemical energy present in organic and inorganic molecules into electrical energy. The concept of microbial electrochemistry has been gaining tremendous attention for the past two decades, mainly due to its numerous applications. This technology offers a wide range of applications in areas such as the environment, industries, and sensors. The biocatalysts governing the reactions could be cell secretion, cell component, or a whole cell. The electroactive bacteria can interact with insoluble materials such as electrodes for exchanging electrons through colonization and biofilm formation. Though biofilm formation is one of the major modes for extracellular electron transfer with the electrode, there are other few mechanisms through which the process can occur. Apart from biofilm formation electron exchange can take place through flavins, cytochromes, cell surface appendages, and other metabolites. The present article targets the various mechanisms of electron exchange for microbiome-induced electron transfer activity, proteins, and secretory molecules involved in the electron transfer. This review also focuses on various proteomics and genetics strategies implemented and developed to enhance the exo-electron transfer process in electroactive bacteria. Recent progress and reports on synthetic biology and genetic engineering in exploring the direct and indirect electron transfer phenomenon have also been emphasized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.