We show that chevron-notched samples offer an attractive approach to the measurement of fracture toughness in micron-scale samples of brittle materials and use the method to characterize quartz and nanocrystalline alumina. Focused ion beam milling is used to carve bend bars of rectangular cross-section a few micrometres wide and containing a notch with a triangular ligament. Load-controlled testing is conducted using a nanoindentation apparatus. If the notch is appropriately machined, cracks nucleate and propagate in a stable fashion before becoming unstable. Sample dimensions are measured using a scanning electron microscope, and are used as input in finite element simulations of the bars' elastic deformation for various crack lengths. The calculated compliance calibration curve and the measured peak load then give the local fracture toughness of the material. Advantages of the method include a low sensitivity to environmental subcritical crack growth, and the fact that it measures toughness at the tip of a sharp crack situated in material unaffected by ion-milling. The approach is demonstrated on two materials, namely, monolithic fused quartz and nanocrystalline alumina Nextele 610 fibres; results for the latter give the intrinsic grain boundary toughness of alumina, free of grain bridging effects.
The vinyl acetate (VA) content in ethylene vinyl acetate (EVA) can significantly affect its performance as an encapsulant in photovoltaic modules under field conditions. EVA films of varying VA content (18, 24, 33, and 40%) have been prepared using twin screw extruder with the necessary additives and subsequently cured at 150 C. All the EVA films have been subjected to UV radiation at a wavelength of 340 nm for 1000 and 2000 h to simulate accelerated field aging. The effects of accelerated aging on the gel content, mechanical properties, transmittance, Fourier transform infra-red (FTIR) spectra, thermal stability, degree of crystallinity, and yellowness have been studied. The observations made in this study of UV aging up to 2000 h suggests that the optimum range of VA content in EVA should be between 18 and 33% by weight. VA content beyond 40% degrades almost all properties needed for an encapsulate material after aging of only 2000 h. VA content of around 18% is the most stable under UV aging conditions but has a slightly lower value of transmittance for the unaged sample although the difference in transmittance between different specimens decreases with UV aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.