SUMMARYPurpose: To evaluate the magnetic resonance imaging (MRI) of pediatric patients with infantile spasms (IS) treated with vigabatrin (VGB) in order to investigate whether VGB affects the brain. Methods: One hundred seven pediatric patients diagnosed with IS and treated with (n = 95) ‡120 mg/kg/day VGB or without (n = 12) VGB were included. MRI and diffusion-weighted imaging (DWI) were retrospectively analyzed. Results: Of the patients who had MRI scans during, but not before, VGB treatment (n = 81), 25 (30.9%) exhibited abnormal MRI signal intensity and/or restricted DWI in the deep gray nuclei and brainstem. Follow-up scans (performed in 15 of the 25 patients) revealed that these changes were reversible upon withdrawal of the medication. Analysis of patients undergoing scans before, during, and after VGB treatment (n = 14) revealed that four patients had abnormal MRI signal during treatment with VBG, two of whom reversed with cessation of VGB, one reversed without cessation of VGB, and another had persistent abnormal signal while being weaned from the VGB. Patients who had not received VGB treatment (n = 12) displayed normal imaging. Younger infants (£12 months) and those with cryptogenic IS were more likely to develop abnormal signal changes on MRI during VGB treatment. Discussion: In pediatric patients, VGB induces reversible MRI signal changes and reversible diffusion restriction in the globi pallidi, thalami, brainstem, and dentate nuclei. The risk for this phenomenon was greater in younger infants and patients with cryptogenic IS.
A computational model was developed to evaluate the limitations to the highest axial resolution, achievable with ultrahigh resolution optical coherence tomography (UHROCT) in the 1060 nm wavelength region for in-vivo imaging of the human and rodent retina. The model considers parameters such as the wavelength dependent water absorption, the average length of the human and rodent eyes, and the power limitations for the imaging beam as defined in the ANSI standard. A custom-built light source with re-shaped spectrum was used to verify experimentally the results from the computational model. Axial OCT resolution of 4.2 microm and 7.7 microm was measured from a mirror reflection with the custom light source by propagating the imaging beam through water cells with 5 mm and 25 mm thickness, corresponding to the average axial length of the rodent and human eye respectively. Assuming an average refractive index of 1.38 for retinal tissue, the expected axial OCT resolution in the rodent and human retina is 3 microm and 5.7 microm respectively. Retinal tomograms acquired in-vivo from the rat eye with the modified light source show clear visualization of all intraretinal layers, as well as a network of capillaries (approximately 10 microm in diameter) in the inner- and outer plexiform layers of the retina.
Unexpectedly, lenses extracted with HBSS showed SFPA and MTT assay responses and an observed effect on the bovine lens epithelium visualized by CLSM, indicating that unknown chemical agents may be leached from contact lens polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.