The photoelectrochemical response of nanoporous films, obtained by anodization of Ti and W substrates in a variety of corrosive media and at preselected voltages in the range from 10 to 60 V, was studied. The as-deposited films were subjected to thermal anneal and characterized by scanning electron microscopy and X-ray diffraction. Along with the anodization media developed by previous authors, the effect of poly(ethylene glycol) (PEG 400) or D-mannitol as a modifier to the NH4F electrolyte and glycerol addition to the oxalic acid electrolyte was studied for TiO2 and WO3, respectively. In general, intermediate anodization voltages and film growth times yielded excellent-quality photoelectrochemical response for both TiO2 and WO3 as assessed by linear-sweep photovoltammetry and photoaction spectra. The photooxidation of water and formate species was used as reaction probes to assess the photoresponse quality of the nanoporous oxide semiconductor films. In the presence of formate as an electron donor, the incident photon to electron conversion efficiency (IPCE) ranged from approximately 130% to approximately 200% for both TiO2 and WO3 depending on the film preparation protocol. The best photoactive films were obtained from poly(ethylene glycol) (PEG 400) containing NH4F for TiO2 and from aqueous NaF for WO3.
This paper describes TiO2 nanotube arrays prepared by anodic oxidation of Ti substrates using pulse voltage waveforms. Voltages were pulsed between 20 and -4 V or between 20 and 0 V with varying durations from 2 to 16 s at the lower limit of the pulse waveform. Ammonium fluoride or sodium fluoride (and mixtures of both) was used as the electrolyte with or without added medium modifier (glycerol, ethylene glycol, or poly (ethylene glycol) (PEG 400)) in these experiments. The pulse waveform was optimized to electrochemically grow TiO2 nanotubes and chemically etch their walls during its cathodic current flow regime. The resultant TiO2 nanotube arrays showed a higher quality of nanotube array morphology and photoresponse than samples grown via the conventional continuous anodization method. Films grown with a 20 V/-4 V pulse sequence and pulse duration of 2 s at its negative voltage limit afforded a superior photoresponse compared to other pulse durations. Specifically, the negative voltage limit of the pulse (-4 V) and its duration promote the adsorption of NH4+ species that in turn inhibits chemical attack of the growing oxide nanoarchitecture by the electrolyte F- species. The longer the period of the pulse at the negative voltage limit, the thicker the nanotube walls and the shorter the nanotube length. At variance, with 0 V as the low voltage limit, the longer the pulse duration, the thinner the oxide nanotube wall, suggesting that chemical attack by fluoride ions is not counterbalanced by NH3/NH4+ species adsorption, unlike the interfacial situation prevailing at -4 V. Finally, the results from this study provide useful evidence in support of existing mechanistic models for anodic growth and self-assembly of oxide nanotube arrays on the parent metal surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.