The fabrication of nanocomposites of polyamide 12 (PA12) and cellulose nanocrystals (CNCs) isolated from cotton and tunicates is reported. Through a comparative study that involved solution-cast (SC) and melt-processed materials, it was shown that PA12/CNC nanocomposites can be prepared in a process that appears to be readily scalable to an industrial level. The results demonstrate that CNCs isolated from the biomass by phosphoric acid hydrolysis display both a sufficiently high thermal stability to permit melt processing with PA12, and a high compatibility with this polymer to allow the formation of nanocomposites in which the CNCs are well dispersed. Thus, PA12/CNC nanocomposites prepared by melt-mixing the two components in a co-rotating roller blade mixer and subsequent compression molding display mechanical properties that are comparable to those of SC reference materials. Young's modulus and maximum stress could be doubled in comparison to the neat PA12 by introduction of 10% (CNCs from tunicates) or 15% w/w (CNCs from cotton) CNCs.
Building blocks made from renewable sources attract increasing attention for the design of new polymer systems. Recently, in this particular context, cellulose nanocrystals (CNCs) have gained great interest in both academic research and industry, mainly on account of their ability to reinforce range of polymer matrices and afford nanocomposites with attractive mechanical properties. The limited thermal stability of conventionally produced cellulose nanocrystals (CNCs) has, however, so far limited the range of polymers that could be used as basis for melt‐processed CNC nanocomposites. We herein show that a commercially accessible nanocrystal source, a particular grade of microcrystalline cellulose (MCC), can easily be converted into thermally stable CNCs by ultrasonication in phosphoric acid. A scalable melt‐mixing process was used to produce nanocomposites of these CNCs with a thermoplastic polyurethane (TPU) elastomer. A significant improvement of the room temperature storage modulus from 40 MPa (neat polymer) to 120 MPa (10% w/w CNC) was observed. The introduction of CNCs not only increased the stiffness of the polymer matrix, but also improved the shape memory properties of the nanocomposite. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45033.
Thermoplastic polyurethanes (PUs) can display shape-memory (SM) characteristics if their microphase-separated structure, consisting of domains formed by hard blocks and soft segments, respectively, is complemented with the ability of the soft segments to partially crystallize, so that the third phase thus formed can serve as the switching element for the shapememory effect. While property modifications of SMPUs usually require de novo synthesis, we show at the example of a commercially available poly(ester urethane) consisting of crystallizable poly(1,4-butylene adipate) soft/switching segments and hard segments composed of 4,4methylenediphenyl diisocyanate and 1,4-butanediol that the thermomechanical properties can also be modified by formulating nanocomposites and/or influencing the crystallization of the soft/switching segments via the addition of a nucleating agent. The incorporation of cellulose nanocrystals (CNCs) by simple melt-mixing allowed increasing the tensile storage modulus from 150 MPa (neat polymer) to 572 MPa (15% w/w CNCs) while the shape fixity at a specific fixing temperature was increased from 47 to 75%. The temperature at which good fixity (>97%) could be rapidly achieved was increased from 10 to 25ºC upon addition of 1% w/w dodecanoic acid, which served to nucleate the poly(1,4-butylene adipate) crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.