This paper proposes a novel adaptive optimization algorithm to solve the network reconfiguration and distributed generation (DG) placement problems with objective functions including power loss minimization and voltage stability index (VSI) improvement. The proposed technique called Adaptive Shuffled Frogs Leaping Algorithm (ASFLA) was performed for solving network reconfiguration and DG installation in IEEE 33-and 69-bus distribution systems with seven different scenarios. The performance of ASFLA was compared to that of other algorithms such as Fireworks Algorithm (FWA), Adaptive Cuckoo Search Algorithm (ACSA) and Shuffled Frogs Leaping Algorithm (SFLA). It was found that the power loss and VSI provided by ASFLA were better than those given by FWA, ACSA and SFLA in both 33-and 69-bus systems. The best solution of power loss reduction and VSI improvement of both 33-and 69-bus systems was achieved when the network reconfiguration with optimal sizing and the location DG were simultaneously implemented. From our analysis, it was indicated that the ASFLA could provide better solutions than other methods since the generating process, local and global searching of this algorithm were significantly improved from a conventional method. Hence, the ASFLA becomes another effective algorithm for solving network reconfiguration and DG placement problems in electrical distribution systems.
In this paper, a hybrid optimization algorithm is proposed to solve multiobjective optimal power flow problems (MO-OPF) in a power system. The hybrid algorithm, named DA-PSO, combines the frameworks of the dragonfly algorithm (DA) and particle swarm optimization (PSO) to find the optimized solutions for the power system. The hybrid algorithm adopts the exploration and exploitation phases of the DA and PSO algorithms, respectively, and was implemented to solve the MO-OPF problem. The objective functions of the OPF were minimization of fuel cost, emissions, and transmission losses. The standard IEEE 30-bus and 57-bus systems were employed to investigate the performance of the proposed algorithm. The simulation results were compared with those in the literature to show the superiority of the proposed algorithm over several other algorithms; however, the time computation of DA-PSO is slower than DA and PSO due to the sequential computation of DA and PSO.
Nowadays, the changes of economic, environment, and regulations are forcing the electric utilities to operate systems at maximum capacity. Therefore, the operation and control of power system to improve the system stability has been receiving a great deal of attention. This paper presents an approach for enhancing the static voltage stability margin and reducing the power losses of the system with voltage security-constrained optimal power flow (VSC-OPF) that is based on static line voltage stability indices. The control approaches incorporate the voltage stability criteria into the conventional OPF. The minimization of the summation of fast voltage stability index (FVSI), line stability index (Lmn), and line voltage stability index (LVSI) is used as the objective functions. The performance and effectiveness of the proposed control approaches are evaluated on the standard IEEE 30-bus, 57-bus, and 118-bus test systems under normal and contingency conditions. The comparison analysis is carried out with different cases including minimization of generation cost. The proposed control approaches indicate the promising results and offer efficient countermeasures against the voltage instability of the system.
Solving the Unit Commitment problem is an important step in optimally dispatching the available generation and involves two stages—deciding which generators to commit, and then deciding their power output (economic dispatch). The Unit Commitment problem is a mixed-integer combinational optimization problem that traditional optimization techniques struggle to solve, and metaheuristic techniques are better suited. Dragonfly algorithm (DA) and particle swarm optimization (PSO) are two such metaheuristic techniques, and recently a hybrid (DA-PSO), to make use of the best features of both, has been proposed. The original DA-PSO optimization is unable to solve the Unit Commitment problem because this is a mixed-integer optimization problem. However, this paper proposes a new and improved DA-PSO optimization (referred to as iDA-PSO) for solving the unit commitment and economic dispatch problems. The iDA-PSO employs a sigmoid function to find the optimal on/off status of units, which is the mixed-integer part of obtaining the Unit Commitment problem. To verify the effectiveness of the iDA-PSO approach, it was tested on four different-sized systems (5-unit, 6-unit, 10-unit, and 26-unit systems). The unit commitment, generation schedule, total generation cost, and time were compared with those obtained by other algorithms in the literature. The simulation results show iDA-PSO is a promising technique and is superior to many other algorithms in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.