A chemical investigation of the sponge Verongula cf. rigida led to the isolation of 13 merosesquiterpenes, among which quintaquinone (2), 5-epi-nakijiquinone L (3), and 3-farnesyl-2hydroxy-5-methoxyquinone (4) were isolated and reported here for the first time. Particularly, compound 2 is the first member of merosesquiterpenes with a polyketide side chain substituted on C-19. All of the isolated compounds were examined for steroid 5αreductase inhibitory activity. Cyclospongiaquinone 1 (5) showed a strong activity in the same range as that of standard finasteride.
Colorectal cancer (CRC) is a frequently occurring malignant disease with still low survival rates, highlighting the need for novel therapeutics. Merosesquiterpenes are secondary metabolites from marine sponges, which might be useful as antitumor agents. To address this issue, we made use of a compound library comprising 11 isolated merosesquiterpenes. The most cytotoxic compounds were smenospongine > ilimaquinone ≈ dactylospontriol, as shown in different human CRC cell lines. Alkaline Comet assays and γH2AX immunofluorescence microscopy demonstrated DNA strand break formation in CRC cells. Western blot analysis revealed an activation of the DNA damage response with CHK1 phosphorylation, stabilization of p53 and p21, which occurred both in CRC cells with p53 knockout and in p53-mutated CRC cells. This resulted in cell cycle arrest followed by a strong increase in the subG1 population, indicative of apoptosis, and typical morphological alterations. In consistency, cell death measurements showed apoptosis following exposure to merosesquiterpenes. Gene expression studies and analysis of caspase cleavage revealed mitochondrial apoptosis via BAX, BIM, and caspase-9 as the main cell death pathway. Interestingly, the compounds were equally effective in p53-wild-type and p53-mutant CRC cells. Finally, the cytotoxic activity of the merosesquiterpenes was corroborated in intestinal tumor organoids, emphasizing their potential for CRC chemotherapy.
More than half of Thai patients with cancer take herbal preparations while receiving anticancer therapy. There is no systematic or scoping review on interactions between anticancer drugs and Thai herbs, although several research articles have that Thai herbs inhibit cytochrome P450 (CYP) or efflux transporter. Therefore, we gathered and integrated information related to the interactions between anticancer drugs and Thai herbs. Fifty-two anticancer drugs from the 2020 Thailand National List of Essential Medicines and 75 herbs from the 2020 Thai Herbal Pharmacopoeia were selected to determine potential anticancer drug–herb interactions. The pharmacological profiles of the selected anticancer drugs were reviewed and matched with the herbal pharmacological activities to determine possible interactions. A large number of potential anticancer drug–herb interactions were found; the majority involved CYP inhibition. Efflux transporter inhibition and enzyme induction were also found, which could interfere with the pharmacokinetic profiles of anticancer drugs. However, there is limited knowledge on the pharmacodynamic interactions between anticancer drugs and Thai herbs. Therefore, further research is warranted. Information regarding interactions between anticancer drugs and Thai herbs should provide as a useful resource to healthcare professionals in daily practice. It could enable the prediction of possible anticancer drug–herb interactions and could be used to optimize cancer therapy outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.