The drift of Gondwana‐derived blocks across the Tethys has remained unclear specifically because one of the largest components, Indochina, has remained unconstrained by paleomagnetism during the late Paleozoic, the interval comprising the first half of its journey towards the Eurasian landmass. Hence, we report a paleomagnetic study of Early‐Middle Permian limestones from central Thailand yielding a high‐quality data set for the Indochina Block with probable primary origin. The magnetization yields a paleomagnetic pole at 34.1°N, 331.7°E (K = 45.4, A95 = 5.7°) corresponding to a paleolatitude of 21.2 ± 5.7°S at the center of the study area (15°N, 101°E) and supporting a tropical restoration for late Paleozoic Indochina. A total of ~5,000 km northward transition from a proximity to Gondwana in the Early‐Middle Permian (ca. 280 Ma) to the southern margin of Eurasia by the Late Triassic (Norian, ca. 220 Ma) is identified and yields an average northward latitudinal drift rate of ~4.5 cm/year. A concurrent northward drifting history during the Permian is suggested for the Indochina, North Qiangtang, and South China blocks, and thus, the widely used model of Permian Cathaysialand is quantitively supported when combined with their paleobiogeographic affinities.
The effects of the Sibumasu–Indochina Terranes collision created several kinds of mineral deposits in Thailand, which include porphyry–skarn copper–gold, epithermal gold and antimony, orogenic gold–antimony–tungsten and tin‐tungsten mineralization among others. The deposits show a distinct spatial zonal distribution and occur in specific tectonic terranes. Combining regional geological data and ore deposit distribution data with Hf‐isotopic data of zircons in igneous rocks can be used to investigate the relationship between crustal construction processes and metallogeny. In this study, we investigated the Sukhothai Fold Belt, which is composed of quartz monzodiorite, granodiorite, syenogranite, and monzogranite of I‐ and S‐type affinities. All granitoids were analyzed for zircon U–Pb geochronology and Lu–Hf isotopic analysis. The granitoids of the Sukhothai Fold Belt yielded U–Pb zircon ages ranging from ~243 to 202 Ma, which mark the timing of subduction to the syn‐collisional stage between the Sibumasu–Indochina terranes at ~243–237 Ma and the timing of post‐collision between the Sibumasu–Indochina terranes during 230–202 Ma. In addition, an age of ~43 Ma in the south of the Sukhothai Fold Belt may indicate intrusion during the sinistral movement of the Klaeng and Mae Ping fault zones resulted from the Indian–Eurasian plate collision. The Doi Tung quartz monzodiorite provided an age of ~350 Ma as a timing of formation of the Sukhothai Fold Belt. The negative and positive initial εHf values (−8.0 to +9.2) with two‐stage depleted mantle model ages (TDMC of 2.2–0.6 Ga) of zircons from the Sukhothai Fold Belt granitoids indicate that the sources of their magma derived from partial melting of old continental crust and young oceanic crust, which probably mixed with a mantle‐derived magma. A zircon Hf‐isotope compilation including the data obtained in this study and previously reported values was used to prepare a map that allows a comparison between magmatic source and mineral deposit distribution in Thailand. The spatial distribution of Hf isotopic data reveals a distinct zonation, with initial εHf values decreasing from the east to the west, that is, from the western margin of the Indochina Terrane or the Loei Fold Belt to the Sukhothai Fold Belt, the Inthanon Zone and the Sibumasu Terrane. The magmatic source for the granitoids in the Loei Fold Belt is dominated by mantle‐derived components, as shown by positive average initial εHf values (+1.0 to +12.7), and contributed to porphyry‐related skarn copper–gold and iron and epithermal gold mineralization. In contrast, magmas in the Sibumasu Terrane and the Inthanon Zone originated from melting of old crustal materials, as indicated by mostly negative average initial εHf values (−15.1 to +0.8), and are responsible for S‐type granite‐related tin‐tungsten mineralization. The average initial εHf values (−5.0 to +11.0) from the intrusions in the Sukhothai Fold Belt suggest mixed sources, including evolved and juvenile magmatic materials, which generated the oroge...
The Hokuroku region of north-eastern Japan is endowed with important volcanic-hosted massive sulphide Zn–Pb–Cu deposits, which are considered the archetype of Kuroko (black ore) deposits worldwide. The bimodal, felsic-dominated volcanic succession that hosts the ore was deposited in a continental rift formed during continental extension in the final stages of the Miocene back-arc opening that led to the formation of the Japan Sea. In this study, we define some of the fundamental intensive parameters of this volcanism (temperature, pressure of crystallisation, fluid saturation, fO2) based on rock textures, and analyses of whole-rock samples, minerals and melt inclusions. Based on the melt inclusion analyses, we assess the behaviour of metals during magma evolution and degassing, and evaluate the possible implications for ore deposition. Plagioclase-melt geothermometry in felsic tuff and lava samples collected from both the units underlying and overlying the Kuroko indicates temperatures of 880–940 °C, and Fe–Ti oxide equilibrium indicates oxygen fugacity of ca. FMQ + 1.5. Melt inclusions have high-SiO2 rhyolite compositions (> 75 wt%, on an anhydrous basis), and the plot of normative mineral compositions in the granitic triplot indicates low pressure of magma stalling and crystallisation (< 1 kbar) at cotectic compositions. Melt inclusion metal contents plotted vs incompatible element Y suggest contrasting behaviour of different metals during fractionation and degassing. Zinc was mostly retained in the melt during crystallisation, whereas other metals, such as Pb, Cu, Sn and Mo, were released to an exsolving fluid phase. The latter may have thus been transferred to the hydrothermal system from a degassing magma. Shallow storage of relatively hot magma would have induced vigorous hydrothermal circulation on the seafloor, a precondition for ore deposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.