Since the onset of the global pandemic in early 2020, coronavirus disease 2019 (COVID-19) has posed a multitude of challenges to health care systems worldwide. In order to combat these challenges and devise appropriate therapeutic strategies, it becomes of paramount importance to elucidate the pathophysiology of this illness. Coronavirus disease 2019, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), is characterized by a dysregulated immune system and hypercoagulability. COVID-associated coagulopathy (CAC) was recognized based on profound d-dimer elevations and evidence of microthrombi and macrothrombi, both in venous and arterial systems. The underlying mechanisms associated with CAC have been suggested, but not clearly defined. The model of immunothrombosis illustrates the elaborate crosstalk between the innate immune system and coagulation. The rendering of a procoagulant state in COVID-19 involves the interplay of many innate immune pathways. The SARS-CoV2 virus can directly infect immune and endothelial cells, leading to endothelial injury and dysregulation of the immune system. Activated leukocytes potentiate a procoagulant state via release of intravascular tissue factor, platelet activation, NETosis, and inhibition of anticoagulant mechanisms. Additional pathways of specific relevance in CAC include cytokine release and complement activation. All these mechanisms have recently been reported in COVID-19. Immunothrombosis provides a comprehensive perspective of the several synergistic pathways pertinent to the pathogenesis of CAC.
Thyroid cancer can be largely classified as well-differentiated, poorly differentiated, medullary and anaplastic. Differentiated thyroid cancer (DTC) includes follicular and papillary subtypes, with the incidence of papillary thyroid cancer (PTC) on the rise. The mainstay of treatment for DTC includes a combination of surgery, radioactive iodine (RAI) and levothyroxine suppression. DTC portends a favorable prognosis, even in the presence of distant metastases, with a 50% rate of 5-year survival largely due to tumor cell’s sensitivity to RAI therapy influencing disease outcome. In radioactive iodine refractory differentiated thyroid cancer (RAI-refractory DTC) there is a lower survival rate prompting the use of other therapeutic options available. RAI refractoriness is more common in older patients (age >40), large metastases and lesions that are fluorodeoxyglucose (FDG) avid on position emission tomography (PET). Over the past decade, Identification of genetic mutations in the signaling pathway involved in thyroid tumorigenesis has led to the approval of tyrosine kinase inhibitors (TKIs); Sorafenib and Lenvatinib in RAI-refractory DTC. Similarly, metastatic medullary thyroid cancer (MTC) implies an unfavorable 10-year survival rate of only 20% as the principal treatment options focuses on loco regional control via surgical and/or non-surgical options. The approval of TKIs such as Cabozantinib and Vandetanib has introduced an encouraging, novel, systemic therapeutic option for metastatic MTC. Lastly, anaplastic thyroid cancer (ATC) carries the worst prognosis with high recurrence rates. Treatment includes surgery, chemotherapy and external beam radiation. The FDA recently approved Dabrafenib plus trametinib for BRAF V600E mutated ATC. Considering the modality of chemotherapy and the expanding field of targeted therapies, the role of the oncologist and interaction with endocrinologist in the management of thyroid cancer needs further clarification aiming at collaborative management plans more than ever. This review summarizes the key phase III trials that led to the approval of TKIs in the treatment of DTC and metastatic MTC. Additionally, the review aims to clarify the patient selection criteria for initiation of TKIs and examine the implications, considerations and adverse effects prior to utilizing targeted therapy. Clinical trials are ongoing with promising results and may contribute to the addition of several targeted molecules and immune check point inhibitors to the therapeutic armamentarium for RAI-refractory DTC, medullary and anaplastic thyroid cancer.
COVID-19 disease is a viral illness that predominantly causes pneumonia and severe acute respiratory distress syndrome. The endothelial injury and hypercoagulability secondary to the inflammatory response predisposes severely ill patients to venous thromboembolism. The exact mechanism of hypercoagulability is still under investigation, but it is known to be associated with poor prognosis. The most common thrombotic complication reported among these patients is pulmonary embolism. To our knowledge, gonadal vein thrombosis is an uncommon phenomenon that has not been reported in the setting of COVID-19-associated coagulopathy. We report an unusual case of ovarian vein thrombosis and pulmonary embolism associated with COVID-19 presenting with abdominal pain. To our knowledge, this is the first reported case of COVID-19 with absent respiratory symptoms and presentation with venous thrombosis in an unusual location.
With increasing legalization, marijuana has become the most commonly abused substance in the United States. Together with the introduction of more potent marijuana products over the years, more adverse events are being reported and clinically characterized. Delta-9-tetrahydrocannabinol (THC) is the active psychotropic component of marijuana, which acts mainly on G-protein cannabinoid receptors CB1 and CB2. Multiple isolated cases of arrhythmias associated with marijuana use have been published. In this manuscript we conduct a scoping study of a total of 27 cases of arrhythmia associated with marijuana. Most cases were reported in young males (81%) with a mean age of 28 ± 10.6 years. Atrial fibrillation (26%) and ventricular fibrillation (22%) were the most common arrhythmias reported. Brugada pattern was reported in 19% of the patients. Marijuana associated arrhythmia resulted in a high mortality rate of 11 %. While the exact mechanisms of arrhythmias associated with marijuana are not clear, several hypothesis have been introduced including the effect of marijuana on cardiac ion channels as well as its effects on the central nervous system. In this paper we discuss the possible mechanisms of marijuana induced arrhythmia citing the evidence available to-date.
Background. The COVID-19 infection which emerged in December 2019, is caused by the virus SARS-CoV-2. Infection with this virus can lead to severe respiratory illness, however, myocarditis has also been reported. The purpose of this study is to identify the clinical features of myocarditis in COVID-19 patients. Methods. A systematic review was conducted to investigate characteristics of myocarditis in patients infected with COVID-19 using the search term "Coronavirus" or "COVID" and "myocarditis," "heart," or "retrospective." Case reports and retrospective studies were gathered by searching Medline/Pubmed, Google Scholar, CINAHL, Cochrane CENTRAL, and Web of Science databases. 11 articles were selected for review. Results. COVID-19 myocarditis affected patients over the age of 50 and incidences among both genders were equally reported. Patients presented with dyspnea, cough, fever with hypotension and chest pain. Laboratory tests revealed leukocytosis with increased C-reactive protein, while arterial blood gas analysis demonstrated respiratory acidosis. All cardiac markers were elevated. Radiographic imaging of the chest showed bilateral ground glass opacities or bilateral infiltrates, while cardiac magnetic resonance imaging produced late gadolinium enhancements. Electrocardiography demonstrated ST-segment elevation or inverted T waves, while echocardiography revealed reduced left ventricular ejection fraction with cardiomegaly or increased wall thickness. Management with corticosteroids was favored in most cases, followed by antiviral medication. The majority of studies reported either recovery or no further clinical deterioration. Conclusion. Current available data on COVID-19 myocarditis is limited. Further research is needed to advance our understanding of COVID-19 myocarditis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.