The ExoMol database ( www.exomol.com ) provides molecular data for spectroscopic studies of hot atmospheres. While the data are intended for studies of exoplanets and other astronomical bodies, the dataset is widely applicable. The basic form of the database is extensive line lists; these are supplemented with partition functions, state lifetimes, cooling functions, Landé g-factors, temperature-dependent cross sections, opacities, pressure broadening parameters, k -coefficients and dipoles. This paper presents the latest release of the database which has been expanded to consider 80 molecules and 190 isotopologues totaling over 700 billion transitions. While the spectroscopic data are concentrated at infrared and visible wavelengths, ultraviolet transitions are being increasingly considered in response to requests from observers. The core of the database comes from the ExoMol project which primarily uses theoretical methods, albeit usually fine-tuned to reproduce laboratory spectra, to generate very extensive line lists for studies of hot bodies. The data have recently been supplemented by line lists derived from direct laboratory observations, albeit usually with the use of ab initio transition intensities. A major push in the new release is towards accurate characterisation of transition frequencies for use in high resolution studies of exoplanets and other bodies.
Field induced single-molecule-magnet behaviour is observed for both a heterodinuclear [ZnDy(L(-))2](3+) complex (1) and a mononuclear [Dy(HL)2](3+) complex (2), with effective energy barriers of 83 cm(-1) and 16 cm(-1), respectively. Insights into the relaxation mechanism(s) and barrier heights are provided via ab initio and DFT calculations. Our findings reveal an interesting observation that the U(eff) of SMMs can be enhanced by incorporating diamagnetic metal ions.
Four novel mononuclear tetrahedral cobalt(II) complexes containing exocyclic mesoionic ligands of molecular formulae [Co(II)(L1)(X)2(MeCN)] X = Cl (1) or Br (2) and [Co(II)(L2)(X)2(MeCN)], X = Cl (3) or Br (4) have been reported. It is found that simple substitution of L1 (O donor in 1 and 2) by L2 (S donor in 3 and 4) results in switching of the single ion magnetic anisotropy parameter (D) from positive to negative, with a significant change in magnitude.
Four complexes containing Dy and Pr ions and their Ln -Zn analogs have been synthesized in order to study the influence that a diamagnetic Zn ion has on the electronic structure and hence, the magnetic properties of the Dy and Pr single ions. Single-crystal X-ray diffraction revealed the molecular structures as [Dy (HL) (NO ) ] (1), [Pr (HL) (NO ) ] (2), [Zn Dy (L) (CH CO )(NO ) ] (3) and [Zn Pr (L) (CH CO ) (NO )] (4) (where HL=2-methoxy-6-[(E)-phenyliminomethyl]phenol). The dc and ac magnetic data were collected for all four complexes. Compounds 1 and 3 display frequency dependent out-of-phase susceptibility signals (χ "), which is a characteristic signature for a single-molecule magnet (SMM). Although 1 and 3 are chemically similar, a fivefold increase in the anisotropic barrier (U ) is observed experimentally for 3 (83 cm ), compared to 1 (16 cm ). To rationalize the larger anisotropic barrier (1 vs. 3), detailed ab initio calculations were performed. Although the ground state Kramer's doublet in both 1 and 3 are axial in nature (g =19.443 for 1 and 18.82 for 3), a significant difference in the energy gap (U ) between the ground and first excited Kramer's doublet is calculated. This energy gap is governed by the electrostatic repulsion between the Dy ion and the additional charge density found for the phenoxo bridging ligand in 3. This extra charge density was found to be a consequence of the presence of the diamagnetic Zn ion present in the complex. To explore the influence of diamagnetic ions on the magnetic properties further, previously reported and structurally related Zn-Dy complexes were analyzed. These structurally analogous complexes unambiguously suggest that the electrostatic repulsion is found to be maximal when the Zn-O-Dy-O dihedral angle is small, which is an ideal condition to maximize the anisotropic barrier in Dy complexes.
The reaction of hydrated nickel(II) salts (chloride or nitrate) and hydrated lanthanide nitrate salts with the Schiff base ligand 2-methoxy-6-[(E)-phenyliminomethyl] phenol (HL) in methanol resulted in the isolation of three isostructural linear heterometallic trinuclear complexes and a heterometallic tetranuclear complex. The molecular structures of these complexes were determined via single crystal X-ray diffraction revealing molecular structures of formulae [Ni2La(L-)6](NO3)0.55(OH)0.45 (1), [Ni2Pr(L-)6](NO3)0.48(OH)0.52 (2), [Ni2Tb(L-)6](NO3)0.5(Cl)0.5 (3) and [Ni2Dy2(L-2(o-vanillin)2(CO3)2(NO3)2(MeOH)2] (4). Structural analysis for 1-3 reveals that the lanthanide ion is sandwiched between two Ni(II) ions and the Ni⋯Ln⋯Ni metallic core displays a linear arrangement, with an average ∠Ni⋯Ln⋯Ni bond angle of 179.7°. Analysis of 4 reveals the metal ions are arranged such that two Ni-Dy subunits are bridged by two carbonate ligands via the Dy sites. Direct current magnetic susceptibility measurements for complexes 1-4 reveal that the Ni(II) ions are coupled ferromagnetically with the Tb(III) (3) and Dy(III) (4) ions, and antiferromagnetically with the Pr(III) ion (2). For complex 1 a long range intramolecular ferromagnetic interaction is witnessed between the Ni(II) ions (Ni⋯Ni = 6.873(9) Å) via a closed shell La(III) ion. The magnetic data of 1 were fitted using the HDVV Hamiltonian revealing the following parameters; J = +0.46 cm(-1), g = 2.245, D = +4.91 cm(-1). Alternating current magnetic susceptibility measurements performed on complexes 2-4 revealed that 3 and 4 displayed frequency dependent χ′′M signals (Hac = 3.5 Oe and Hdc = 0 Oe) which is a characteristic signature of a single-molecule magnet behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.