Pleistocene alkaline basaltic lavas crop out in the region of Volos at the localities of Microthives and Porphyrio. Results from detailed petrographic study show porphyritic textures with varying porosity between 15% and 23%. Data from deep and shallow water samples were analysed and belong to the Ca-Mg-Na-HCO3-Cl and the Ca-Mg-HCO3 hydrochemical types. Irrigation wells have provided groundwater temperatures reaching up to ~30 °C. Water samples obtained from depths ranging between 170 and 250 m. The enhanced temperature of the groundwater is provided by a recent-inactive magmatic heating source. Comparable temperatures are also recorded in adjacent regions in which basalts of similar composition and age crop out. Estimations based on our findings indicate that basaltic rocks from the region of Volos have the appropriate physicochemical properties for the implementation of a financially feasible CO2 capture and storage scenario. Their silica-undersaturated alkaline composition, the abundance of Ca-bearing minerals, low alteration grade, and high porosity provide significant advantages for CO2 mineral carbonation. Preliminary calculations suggest that potential pilot projects at the Microthives and Porphyrio basaltic formations can store 64,800 and 21,600 tons of CO2, respectively.
Underground geological energy and CO2 storage contribute to mitigation of anthropogenic greenhouse-gas emissions and climate change effects. The present study aims to present specific underground energy and CO2 storage sites in Greece. Thermal capacity calculations from twenty-two studied aquifers (4 × 10−4–25 × 10−3 MJ) indicate that those of Mesohellenic Trough (Northwest Greece), Western Thessaloniki basin and Botsara flysch (Northwestern Greece) exhibit the best performance. Heat capacity was investigated in fourteen aquifers (throughout North and South Greece) and three abandoned mines of Central Greece. Results indicate that aquifers present higher average total heat energy values (up to ~6.05 × 106 MWh(th)), whereas abandoned mines present significantly higher average area heat energy contents (up to ~5.44 × 106 MWh(th)). Estimations indicate that the Sappes, Serres and Komotini aquifers could cover the space heating energy consumption of East Macedonia-Thrace region. Underground gas storage was investigated in eight aquifers, four gas fields and three evaporite sites. Results indicate that Prinos and South Kavala gas fields (North Greece) could cover the electricity needs of households in East Macedonia and Thrace regions. Hydrogen storage capacity of Corfu and Kefalonia islands is 53,200 MWh(e). These values could cover the electricity needs of 6770 households in the Ionian islands. Petrographical and mineralogical studies of sandstone samples from the Mesohellenic Trough and Volos basalts (Central Greece) indicate that they could serve as potential sites for CO2 storage.
UNESCO and the United Nations have recently identified cultural heritage (CH) as a key enabler of sustainability by incorporating it into several Sustainable Development Goals (SDGs). Accurate and efficient reporting on CH is considered fundamental despite known limitations due to the lack of sufficient and harmonized data. This paper presents a spatially enabled web application for urban CH monitoring for the city of Thessaloniki in Northern Greece. The objective was to integrate the information provided by several independent public registries on CH into a common 2D mapping and reporting platform and to enrich it with additional data provided by other built environment agencies. An estimation of the expected cost for the structural evaluation by experts of the city’s CH assets was also implemented for SDG’s Indicator 11.4.1. The methodology involved stakeholder identification, data collection and pre-processing, field verification and documentation, calculation of Indicator 11.4.1, and the actual coding process. The application can be found online, providing useful insights and statistical information on the city’s heritage in a dashboard format. The key challenges included the lack of updated data, the existence of several individual registries, and the need for regular field inspection due to the rapidly changing urban fabric.
Hydrochemical and isotopic characteristics of fluids from major geothermal fields of middle/low temperature in N/NE Greece are examined [basins: Strymon River (SR), Nestos River Delta (ND), Xanthi–Komotini (XK), Loutros–Feres–Soufli (LFS) and Rhodope Massif]. The geodynamic context is reflected to isotopic/chemical composition of fluids, heat flow values and elevated CO2 concentrations in emitted fluids. B and Li are derived from leaching of the geothermal systems hosting rocks. δ18OH2O, δ18OSO4, δ13CCO2 values and chemical compositions of Cl, B and Li of geothermal discharges suggest two distinct source fluids. Fluids in SR exhibit high B/Cl and Li/Cl ratios, suggesting these constituents are derived from associated magmas of intermediate composition (andesitic rocks). Geothermal discharges in LFS exhibit low B/Cl and Li/Cl ratios, implying acid (rhyolitic) magmatism. δ13CCO2 and CO2/(CO2 + 105He) ratios in the west part, suggest fluids affected by addition of volatiles released from subducted marine sediments. For the eastern systems, these ratios suggest gas encountered in systems issued from mixing of crustal and mantle-derived volatiles. Isotopic geothermometers reflect, for the same direction, equilibrium processes more (LFS, XK) or less (SR) pronounced and discriminate the geothermal field from low to middle [SR, ND (Erasmio)] and middle to high enthalpy [ND (Eratino), LFS, XK].
The Akropotamos area constitutes a new geothermal field located in the eastern coastal zone of the Strymonikos Gulf in Macedonia (Northern Greece)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.