We present observations of the geoelectric field prior to some earthquakes. The data were collected during a three year (1992–1994) independent experimental investigation of VAN at the University of Patras Seismological Center. The recorded signals were: a) Gradual Variations of the Electric Field (GVEF), b) Periodic Variation of the Electric Field (PVEF), and c) Seismic Electric Signals (SES).
Traditional pattern recognition approaches usually generalize poorly on difficult tasks as the problem of identification of the Seismic Electric Signals (SES) electrotelluric precursors for earthquake prediction. This work demonstrates that the Support Vector Machine (SVM) can perform well on this application. The a priori knowledge consists of a set of VAN rules for SES signal detection. The SVM extracts implicitly these rules from properly preprocessed features and obtains generalization performance founded upon a robust mathematical basis. The potentiality of obtaining generalization potential even in feature spaces of high dimensionality bypasses the problems due to overtraining of the conventional machine learning architectures. The paper considers the optimization of the generalization performance of the SVM. The results indicate that the SVM outperforms many alternative computational intelligence models for the task of SES pattern recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.