The growing demand for renewable energy supply stimulates a drastic increase in the deployment rate of offshore wind energy. Offshore wind power generators are usually supported by large foundation piles that are driven into the seabed with hydraulic impact hammers or vibratory devices. The pile installation process, which is key to the construction of every new wind farm, is hindered by a serious by-product: the underwater noise pollution. This paper presents a comprehensive review of the state-of-the-art computational methods to predict the underwater noise emission by the installation of foundation piles offshore including the available noise mitigation strategies. Future challenges in the field are identified under the prism of the ever-increasing size of wind turbines and the emerging pile driving technologies.
A new high-order model for in-plane vibrations of rotating rings is developed in this paper. The inner surface of the ring is connected to an immovable axis through an elastic foundation (distributed springs), whereas the outer surface is traction free. The developed model enables the dynamic analysis of the rings on stiff elastic foundation that rotate with a high speed. The traction force at the inner surface of such rings is so high that it influences significantly the through-thickness stress distribution. This boundary effect cannot be captured by the classical low order theories while the model proposed in this paper can account for this effect. Nonlinear equations of motion are first derived, considering the geometrical nonlinearity of the system while assuming the linear elastic behaviour of the ring material. The formulation accounts for the stress caused by rotation and the significant normal and tangential traction forces at the inner surface of the ring. The displacement fields are assumed to be polynomials of the throughthickness coordinate in both the radial and circumferential directions. The derivation is generic and can yield ring theories of different order, i.e. of the Timoshenko-type and beyond, with proper consideration of both the internal state of the body and the boundary effects at the surfaces. Two types of critical speeds are investigated, namely the one at which the free vibrations become unstable and the one at which the forced vibration of a rotating ring subjected to a constant stationary point load experiences resonance. A comparison is presented of the predictions of the developed model to those of the lower order theories. It is shown that even for thin rings on elastic foundation, high order corrections, beyond the ones of the Timoshenko theory, need to be considered for an accurate estimation of the critical speeds of rotating rings. The new high-order model is superior to the existing ring models in predicting dynamic behaviour of either stationary or rotating rings. Without loss of generality, the model is applicable to both plane strain and plane stress configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.