The ARF tumor suppressor is a nucleolar protein that activates p53-dependent checkpoints by binding Mdm2, a p53 antagonist. Despite persuasive evidence that ARF can bind and inactivate Mdm2 in the nucleoplasm, the prevailing view is that ARF exerts its growth-inhibitory activities from within the nucleolus. We suggest ARF primarily functions outside the nucleolus and provide evidence that it is sequestered and held inactive in that compartment by a nucleolar phosphoprotein, nucleophosmin (NPM). Most cellular ARF is bound to NPM regardless of whether cells are proliferating or growth arrested, indicating that ARF-NPM association does not correlate with growth suppression. Notably, ARF binds NPM through the same domains that mediate nucleolar localization and Mdm2 binding, suggesting that NPM could control ARF localization and compete with Mdm2 for ARF association. Indeed, NPM knockdown markedly enhanced ARF-Mdm2 association and diminished ARF nucleolar localization. Those events correlated with greater ARF-mediated growth suppression and p53 activation. Conversely, NPM overexpression antagonized ARF function while increasing its nucleolar localization. These data suggest that NPM inhibits ARF's p53-dependent activity by targeting it to nucleoli and impairing ARF-Mdm2 association.
Site-directed spin labeling was used to determine the membrane orientation and insertion of the C2A domain from synaptotagmin I. A series of single cysteine mutants of the C2A domain of synaptotagmin I was prepared and labeled with a sulfhydryl specific spin label. Upon Ca2+ or membrane binding, the EPR line shapes of these mutants reveal dramatic decreases in label mobility within the Ca2+-binding loops. This loss in mobility is likely due in part to a reduction in local backbone fluctuations within the loop regions. Power saturation was then used to determine the position of each spin-labeled site along the bilayer normal, and these EPR distance constraints were used along with the high-resolution solution structure of C2A to generate a model for the orientation and position of the domain at the membrane interface. This model places the polypeptide backbone of both the first and third Ca2+-binding loops in contact with the membrane interface, with several labeled side chains lying within the bilayer interior. All three Ca2+-binding sites lie near a plane defined by the lipid phosphates. This model indicates that there is some desolvation of this domain upon binding and that hydrophobic as well as electrostatic interactions contribute to the binding of C2A. When compared to the C2 domain from cPLA2 (Frazier et al. (2002) Biochemistry 41, 6282), a similar orientation for the beta-sandwich region is found; however, the cPLA2 C2 domain is translocated 5-7 A deeper into the membrane hydrocarbon. This difference in depth is consistent with previous biophysical data and with the difference that long-range electrostatic interactions and desolvation are expected to make to the binding of these two C2 domains.
The C2 domain is a ubiquitous Ca(2+)-binding motif that triggers the membrane docking of many key signaling proteins during intracellular Ca(2+) signals. Site-directed spin labeling was carried out on the C2 domain of cytosolic phospholipase A(2) in order to determine the depth of penetration and orientation of the domain at the membrane interface. Membrane depth parameters, Phi, were obtained by EPR spectroscopy for a series of selectively spin-labeled C2 domain cysteine mutants, and for spin-labeled lipids and spin-labeled bacteriorhodopsin cysteine mutants. Values of Phi were combined with several other constraints, including the solution NMR structure, to generate a model for the position of the C2 domain at the membrane interface. This modeling yielded an empirical expression for Phi, which for the first time defines its behavior from the bulk aqueous phase to the center of the lipid bilayer. In this model, the backbones of both the first and third Ca(2+)-binding loops are inserted approximately 10 A into the bilayer, with residues inserted as deep as 15 A. The backbone of the second Ca(2+)-binding loop is positioned near the lipid phosphate, and the two beta-sheets of the C2 domain are oriented so that the individual strands make angles of 30-45 degrees with respect to the bilayer surface. Upon membrane docking, spin labels in the Ca(2+)-binding loops exhibit decreases in local motion, suggesting either changes in tertiary contacts due to protein conformational changes and/or interactions with lipid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.