We examined vection induced during physical or simulated head oscillation along either the horizontal or depth axis. In the first two experiments, during active conditions, subjects viewed radial-flow displays which simulated viewpoint oscillation that was either in-phase or out-of-phase with their own tracked head movements. In passive conditions, stationary subjects viewed playbacks of displays generated in earlier active conditions. A third control, experiment was also conducted where physical and simulated fore ^ aft oscillation was added to a lamellar flow display. Consistent with ecology, when active in-phase horizontal oscillation was added to a radial-flow display it modestly improved vection compared to active out-of-phase and passive conditions. However, when active fore ^ aft head movements were added to either a radial-flow or a lamellarflow display, both in-phase and out-of-phase conditions produced very similar vection. Our research shows that consistent multisensory input can enhance the visual perception of self-motion in some situations. However, it is clear that multisensory stimulation does not have to be consistent (ie ecological) to generate compelling vection in depth. Disciplines
Compelling illusions of self-motion, known as vection, can be produced in a stationary observer by visual stimulation alone. The role of binocular vision and stereopsis in these illusions was explored in a series of three experiments. Previous research had provided evidence of stereoscopic enhancements for linear vection in depth (e.g., Palmisano, 1996, 2002). Here we examined for the first time the effects of binocular vision and stereopsis on linear vertical vection. Vertical vection was induced by the upward or downward translation of large stereoscopic surfaces. These surfaces were horizontally oriented depth corrugations produced by disparity modulation of patterns of persistent or short lifetime dot elements. We found that binocular viewing of such surfaces significantly increased the magnitudes and decreased the onset delays of vertical vection. Experiments utilizing short lifetime dot stereograms demonstrated that these particular binocular enhancements of vection were due to the motion of stereoscopically defined features.
In this study we examined the effects of simulated horizontal and vertical viewpoint jitter on the vection and postural sway induced by radial patterns of optic flow. During each trial, observers were exposed sequentially to 20 s periods of radially expanding flow, radially contracting flow, and static visual scenes. For half the trials, simulated viewpoint jitter was added to the radially expanding/contracting optic flow patterns. In experiment 1, we found that, while this jitter increased the backward postural sway induced by radial expansion, it actually decreased forward postural sway induced by radial contraction. However, in experiment 2 we found that jitter increased both the forward and backward vection induced by radially expanding and contracting flow patterns. We conclude that the processes involved in postural control are more sensitive to the sensory conflicts generated by viewpoint jitter than those involved in the perception of self-motion, and that the observed asymmetries in forward and backward sway are ecological in origin.
We conclude that increasing display lag during active head oscillation only impairs vection until the resulting sensory conflict becomes too great to tolerate. Beyond this critical level of lag, the visual system appears to override or downplay such sensory conflicts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.