The N95 filtering facepiece respirator (FFR) is commonly used to protect individuals from infectious aerosols. Health care experts predict a shortage of N95 FFRs if a severe pandemic occurs, and an option that has been suggested for mitigating such an FFR shortage is to decontaminate and reuse the devices. Before the effectiveness of this strategy can be established, many parameters affecting respiratory protection must be measured: biocidal efficacy of the decontamination treatment, filtration performance, pressure drop, fit, and toxicity to the end user post treatment. This research effort measured the amount of residual chemicals created or deposited on six models of FFRs following treatment by each of 7 simple decontamination technologies. Measured amounts of decontaminants retained by the FFRs treated with chemical disinfectants were small enough that exposure to wearers will be below the permissible exposure limit (PEL). Toxic by-products were also evaluated, and two suspected toxins were detected after ethylene oxide treatment of FFR rubber straps. The results provide encouragement to efforts promoting the evolution of effective strategies for decontamination and reuse of FFRs.
Background
Decontamination, cleaning, and reuse of filtering facepiece respirators (FFRs) has been proposed to mitigate an acute FFR shortage during a public health emergency. Our study evaluates the ability of commercially available wipe products to clean FFRs contaminated with either infectious or noninfectious aerosols.
Methods
Three models of surgical N95 FFRs were contaminated with aerosols of mucin or viable Staphylococcus aureus then cleaned with hypochlorite, benzalkonium chloride, or nonantimicrobial wipes. After cleaning, FFRs were separated into components (nose pad, fabrics, and perforated strip), and contaminants were extracted and quantified. Filtration performance was assessed for cleaned FFRs.
Results
Mucin removal was <1 log for all wipe products on all components. Inert wipes achieved ~1-log attenuation in viable S aureus on fabrics from all FFR models—removal was less effective from nose pads and perforated edges. Both antimicrobial wipes achieved 3–5-log attenuation on most components, with smaller reductions on nose pads and greater reductions on perforated strips. Particle penetration following cleaning yielded mean values <5%. The highest penetrations were observed in FFRs cleaned with benzalkonium chloride wipes.
Conclusions
FFRs can be disinfected using antimicrobial wipe products, but not effectively cleaned with the wipes evaluated in this study. This study provides informative data for the development of better FFRs and applicable cleaning products.
OBJECTIVE. Specification of appropriate personal protective equipment for respiratory protection against influenza is somewhat controversial. In a clinical environment, N95 filtering facepiece respirators (FFRs) are often recommended for respiratory protection against infectious aerosols. This study evaluates the ability of N95 FFRs to capture viable H1N1 influenza aerosols. METHODs. Five N95 FFR models were challenged with aerosolized viable H1N1 influenza and inert polystyrene latex particles at continuous flow rates of 85 and 170 liters per minute. Virus was assayed using Madin-Darby canine kidney cells to determine the median tissue culture infective dose (TCID50). Aerosols were generated using a Collison nebulizer containing H1N1 influenza virus at 1 x 10(8) TCID50/mL. To determine filtration efficiency, viable sampling was performed upstream and downstream of the FFR. RESULTS. N95 FFRs filtered 0.8-μm particles of both H1N1 influenza and inert origins with more than 95% efficiency. With the exception of 1 model, no statistically significant difference in filtration performance was observed between influenza and inert particles of similar size. Although statistically significant differences were observed for 2 models when comparing the 2 flow rates, the differences have no significance to protection. CONCLUSIONS. This study empirically demonstrates that a National Institute for Occupational Safety and Health-approved N95 FFR captures viable H1N1 influenza aerosols as well as or better than its N95 rating, suggesting that a properly fitted FFR reduces inhalation exposure to airborne influenza virus. This study also provides evidence that filtration efficiency is based primarily on particle size rather than the nature of the particle's origin.
Nosocomial infections pose an escalating threat to both patients and healthcare workers (HCWs). A widely recommended device for individual respiratory protection, the N95 filtering facepiece respirator (FFR) has been shown to provide efficient filtration of inert particles larger and smaller than the nominal most-penetrating particle size (MPPS) range, 0.03-0.3 μm. Humans generate respiratory aerosols in the MPPS range, suggesting that short-range disease transmission could occur via small infectious particles. Data presented here show that the N95 FFR will afford a significant measure of protection against infectious particles as small as a bare H1N1 influenza virion, and that the capture mechanism does not discriminate in favor of, or against, biological particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.