Medial ganglionic eminence (MGE)-derived somatostatin (SST)+ and parvalbumin (PV)+ cortical interneurons (CINs), have characteristic molecular, anatomical and physiological properties. However, mechanisms regulating their diversity remain poorly understood. Here, we show that conditional loss of the Tuberous Sclerosis Complex (TSC) gene, Tsc1, which inhibits the mammalian target of rapamycin (MTOR), causes a subset of SST+ CINs, to express PV and adopt fast-spiking (FS) properties, characteristic of PV+ CINs. Milder intermediate phenotypes also occur when only one allele of Tsc1 is deleted. Notably, treatment of adult mice with rapamycin, which inhibits MTOR, reverses the phenotypes. These data reveal novel functions of MTOR signaling in regulating PV expression and FS properties, which may contribute to TSC neuropsychiatric symptoms. Moreover, they suggest that CINs can exhibit properties intermediate between those classically associated with PV+ or SST+ CINs, which may be dynamically regulated by the MTOR signaling.
Neurofibromatosis 1 (NF1) is caused by mutations in theNF1gene, which encodes the protein, neurofibromin, an inhibitor of Ras activity. Cortical GABAergic interneurons (CINs) are implicated in NF1 pathology, but the cellular and molecular changes to CINs are unknown. We deleted mouseNf1from the medial ganglionic eminence, which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin.Nf1loss led to a persistence of immature oligodendrocytes that prevented later-generated oligodendrocytes from occupying the cortex. Moreover, molecular and cellular properties of parvalbumin (PV)-positive CINs were altered by the loss ofNf1, without changes in somatostatin (SST)-positive CINs. We discovered that loss ofNf1results in a dose-dependent decrease inLhx6expression, the transcription factor necessary to establish SST+and PV+CINs, which was rescued by the MEK inhibitor SL327, revealing a mechanism whereby a neurofibromin/Ras/MEK pathway regulates a critical CIN developmental milestone.
Neurofibromatosis-1 (NF-1) is a monogenic disorder caused by mutations in the NF1 gene, which encodes the protein, Neurofibromin, an inhibitor of Ras GTPase activity. While NF-1 is often characterized by café-au-lait skin spots and benign tumors, the mechanisms underlying cognitive changes in NF-1 are poorly understood. Cortical GABAergic interneurons (CINs) are implicated in NF-1 pathology but cellular and molecular changes to CINs are poorly understood. We deleted Nf1 from the medial ganglionic eminence (MGE), which gives rise to both oligodendrocytes and CINs that express somatostatin and parvalbumin. Loss of Nf1 led to a persistence of immature oligodendrocytes that prevented later born oligodendrocytes from occupying the cortex.Moreover, PV+ CINs were uniquely lost, without changes in SST+ CINs. We discovered that loss of Nf1 results in a graded decrease in Lhx6 expression, the transcription factor necessary to establish SST+ and PV+ CINs, revealing a mechanism whereby Nf1 regulates a critical CIN developmental milestone.
The TSC1 and TSC2 genes are connected to multiple syndromes from Tuberous Sclerosis Complex (TSC) to autism spectrum disorder (ASD), with uncertainty if genetic variants cause all or subsets of phenotypes based on the location and type of change. For TSC1, few have addressed if non-TSC associated genetic variants have direct contributions to changes in neurological genotype-to-phenotype impacts, including elevated rates of ASD and seizures. Dominant variants cause TSC, yet TSC1 has many heritable variants not dominant for TSC that are poorly understood in neurological function, with some associated with ASD. Herein, we examined how missense variants in TSC1, R336W, T360N, T393I, S403L, and H732Y, impacted the development of cortical inhibitory interneurons, cell-types whose molecular, cellular, and physiological properties are altered after the loss of mouse TSC1. We found these variants complemented a known phenotype caused by loss of TSC1, increased cell size. However, distinct variants, particularly S403L showed deficits in complementing an increase in parvalbumin levels and exhibited smaller amplitude after hyperpolarizations. Overall, these data show that subtle phenotypes can be induced by some TSC1 missense variants and provide an in vivo system to assess TSC1 variants' neurological impact better.
The RAS/RAF/MEK/ERK1/2 intracellular signaling pathway is activated by numerous cues during brain development and dysregulated in neurodevelopmental syndromes, particularly the RASopathies and certain forms of autism. Cortical excitatory/inhibitory imbalance is thought to be critical in the neuropathogenesis of these conditions. However, the developmental functions of ERK1/2 signaling in cortical inhibitory neurons (CINs) and other medial ganglionic eminence (MGE)-derived non-neuronal cells are poorly understood. Here, we genetically modulated ERK1/2 signaling in mouse MGE neural progenitors or GABAergic neurons in vivo. We find that MEK-ERK1/2 signaling is essential for regulating MGE-derived oligodendrocyte number in the anterior commissure. While Erk1/2 inactivation does not alter CIN number, we show that CIN-autonomous ERK1/2 signaling is necessary for chemogenetic activity-dependent FOSB expression in vivo. This deficit coincides with a significant and persistent reduction in somatostatin, but not parvalbumin, expression in a subset of ERK1/2 deleted inhibitory neurons. Interestingly, one week of chronic chemogenetic stimulation in juvenile or adult animals partially rescues the decrease in somatostatin expression in Erk1/2 mutant CINs. Our data demonstrate ERK1/2 signaling is required for the establishment of MGE-derived glia, whereas in CINs, ERK1/2 drives activity dependent-responses and the expression of somatostatin in a subset of neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.