Effective collaboration in data science can leverage domain expertise from each team member and thus improve the quality and efficiency of the work. Computational notebooks give data scientists a convenient interactive solution for sharing and keeping track of the data exploration process through a combination of code, narrative text, visualizations, and other rich media. In this paper, we report how synchronous editing in computational notebooks changes the way data scientists work together compared to working on individual notebooks. We first conducted a formative survey with 195 data scientists to understand their past experience with collaboration in the context of data science. Next, we carried out an observational study of 24 data scientists working in pairs remotely to solve a typical data science predictive modeling problem, working on either notebooks supported by synchronous groupware or individual notebooks in a collaborative setting. The study showed that working on the synchronous notebooks improves collaboration by creating a shared context, encouraging more exploration, and reducing communication costs. However, the current synchronous editing features may lead to unbalanced participation and activity interference without strategic coordination. The synchronous notebooks may also amplify the tension between quick exploration and clear explanations. Building on these findings, we propose several design implications aimed at better supporting collaborative editing in computational notebooks, and thus improving efficiency in teamwork among data scientists.
The development of AI applications is a multidisciplinary effort, involving multiple roles collaborating with the AI developers, an umbrella term we use to include data scientists and other AI-adjacent roles on the same team. During these collaborations, there is a knowledge mismatch between AI developers, who are skilled in data science, and external stakeholders who are typically not. This difference leads to communication gaps, and the onus falls on AI developers to explain data science concepts to their collaborators. In this paper, we report on a study including analyses of both interviews with AI developers and artifacts they produced for communication. Using the analytic lens of shared mental models, we report on the types of communication gaps that AI developers face, how AI developers communicate across disciplinary and organizational boundaries, and how they simultaneously manage issues regarding trust and expectations.
Computational notebooks allow data scientists to express their ideas through a combination of code and documentation. However, data scientists often pay attention only to the code, and neglect creating or updating their documentation during quick iterations. Inspired by human documentation practices learned from 80 highly-voted Kaggle notebooks, we design and implement Themisto, an automated documentation generation system to explore how human-centered AI systems can support human data scientists in the machine learning code documentation scenario. Themisto facilitates the creation of documentation via three approaches: a deep-learning-based approach to generate documentation for source code, a query-based approach to retrieve online API documentation for source code, and a user prompt approach to nudge users to write documentation. We evaluated Themisto in a within-subjects experiment with 24 data science practitioners, and found that automated documentation generation techniques reduced the time for writing documentation, reminded participants to document code they would have ignored, and improved participants’ satisfaction with their computational notebook.
Data scientists face a steep learning curve in understanding a new domain for which they want to build machine learning (ML) models. While input from domain experts could offer valuable help, such input is often limited, expensive, and generally not in a form readily consumable by a model development pipeline. In this paper, we propose Ziva, a framework to guide domain experts in sharing essential domain knowledge to data scientists for building NLP models. With Ziva, experts are able to distill and share their domain knowledge using domain concept extractors and five types of label justification over a representative data sample. The design of Ziva is informed by preliminary interviews with data scientists, in order to understand current practices of domain knowledge acquisition process for ML development projects. To assess our design, we run a mix-method case-study to evaluate how Ziva can facilitate interaction between domain experts and data scientists. Our results highlight that (1) domain experts are able to use Ziva to provide rich domain knowledge, while maintaining low mental load and stress levels; and (2) data scientists find Ziva's output helpful for learning essential information about the domain, offering scalability of information, and lowering the burden on domain experts to share knowledge. We conclude this work by experimenting with building NLP models using the Ziva output for our case study. CCS CONCEPTS• Human-centered computing → Empirical studies in HCI ; Interactive systems and tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.