Biodiesel can be produced from various vegetable oils and animal fat. Abundant sources of vegetable oil in Indonesia, such as Calophyllum inophyllum, Ricinus communis, palm oil, and waste cooking oil, were used as raw materials. Multi-feedstock biodiesel was used to increase the flexibility operation of biodiesel production. This study was conducted to determine the effect of a combination of vegetable oils on biodiesel characteristics. Degumming and two steps of esterification were applied for high free fatty acid feedstock before trans-esterification in combination with other vegetable oils. Potassium hydroxide was used as a homogenous catalyst and methanol as another raw material. The acid value of C. inophyllum decreased from 54 mg KOH/gr oil to 2.15 mg KOH/gr oil after two steps of esterification. Biodiesel yield from multi-feedstock was 87.926% with a methanol-to-oil molar ratio of 6:1, temperature of 60 ℃, and catalyst of 1%wt.
Nowadays reserve of fossil fuel has gradually depleted. This condition forces many researchers to find energy alternatives which is renewable and sustainable in the future. Ethanol derived from cheese industrial waste (whey) using fermentation process can be a new perspective in order to secure both energy and environment. The aim of this study was to compare the operation modes (batch and fed-batch) of fermentation system on ethanol production from whey using Kluyveromyces marxianus. The result showed that the fermentation process for ethanol production by fed-batch system was higher at some point of parameters compared with batch system. Growth rate and ethanol yield (YP/S) of fed-batch fermentation were 0.122/h and 0.21 gP/gS respectively; growth rate and ethanol yield (YP/S) of batch fermentation were 0.107/h, and 0.12 g ethanol/g substrate, respectively. Based on the data of biomass and ethanol concentrations, the fermentation process for ethanol production by fed-batch system were higher at some point of parameters compared to batch system. Periodic substrate addition performed on fed-batch system leads the yeast growth in low substrate concentrations and consequently increasing their activity and ethanol productivity. Keywords: batch; ethanol; fed-batch; fermentation;Kluyveromyces marxianus, whey
Lactic Acid as a platform chemical has broad application in various industries, especially in the production of Poly Lactic Acid (PLA) for biodegradable plastic. Empty fruit bunch (EFB), abundant by product from palm oil mill industry, is one of potential feedstock to be used in the production of lactic acid from lignocellulose biomass. EFB contains high cellulose and hemicellulose about 37– 59.7% w/w and 16–28% w/w, respectively. The aim of this paper is to study the effects of the operating conditions, such as temperature, reaction time, biomass loading, and catalyst concentration on the yield of lactic acid using barium hydroxide as alkaline catalyst. EFB pretreatment with steam explosion was applied to remove lignin content. The results showed that pretreatment reduced the lignin content from 22.66% to 9.69% w/w. Meanwhile, hemicellulose and cellulose increased from 14.40% to 16.40% w/w and 29.37% to 63.57% w/w, respectively. The highest yield of lactic acid was 21.57% C-mol, achieved by using 0.25 M Ba(OH)2 as the catalyst, with 5% w/v biomass loading, temperature 240°C, during 4 h reaction times. The yield was approximately equal to yield of lactic acid (~ 20%) compared with Pb2+ as the catalyst for EFB conversion although the later catalyst produced fewer by products during conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.