Expression of late embryogenesis abundant (LEA) proteins is highly correlated with desiccation tolerance in anhydrobiotic animals, selected land plants, and bacteria. Genes encoding two LEA proteins, one localized to the cytoplasm/nucleus (AfrLEA2) and one targeted to mitochondria (AfrLEA3m), were stably transfected into human HepG2 cells. A trehalose transporter was used for intracellular loading of this disaccharide. Cells were rapidly and uniformly desiccated to low water content (<0.12 g H 2 O/g dry weight) with a recently developed spin-drying technique. Immediately on rehydration, control cells without LEA proteins or trehalose exhibited 0% membrane integrity, compared with 98% in cells loaded with trehalose and expressing AfrLEA2 or AfrLEA3m; surprisingly, AfrLEA3m without trehalose conferred 94% protection. Cell proliferation across 7 d showed an 18-fold increase for cells dried with AfrLEA3m and trehalose, compared with 27-fold for nondried controls. LEA proteins dramatically enhance desiccation tolerance in mammalian cells and offer the opportunity for engineering biostability in the dried state.water stress | biopreservation | intrinsically disordered proteins | osmolyte | Artemia franciscana
Induction of HIF-1α by oxygen limitation promotes increased phosphorylation and catalytic depression of mitochondrial pyruvate dehydrogenase (PDH) and an enhanced glycolytic poise in cells. Cobalt chloride and desferrioxamine are widely used as mimics for hypoxia because they increase the levels of HIF-1α. We evaluated the ability of these agents to elicit selected physiological responses to hypoxia as a means to metabolically precondition mammalian cells, but without the detrimental effects of hypoxia. We show that while CoCl2 does increase HIF-1α in a dose-dependent manner, it unexpectedly and strikingly decreases PDH phosphorylation at E1α sites 1, 2, and 3 (Ser293, Ser300, and Ser232 respectively) in HepG2 cells. This same effect is also observed for site 1 in mouse NIH/3T3 fibroblasts and J774 macrophages. CoCl2 unexpectedly decreases the mRNA expression for PDH kinase-2 in HepG2 cells, which likely explains the dephosphorylation of PDH observed. Desferrioxamine does not promote the expected increase in PDH phosphorylation either. Dimethyloxaloylglycine (a prolyl hydroxylase inhibitor) performs better in this regard, but failed to promote the stronger effects seen with hypoxia. Consequently, CoCl2 and desferrioxamine are unreliable mimics of hypoxia for physiological events downstream of HIF-1α stabilization. Our study demonstrates that mimetic chemicals must be chosen with caution and evaluated thoroughly if bona fide cellular outcomes are to be promoted with fidelity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.