Estimating genetic trends using historical data is an important parameter to check the success of the breeding programs. The estimated genetic trends can act as a guideline to target the appropriate breeding strategies and optimize the breeding program for improved genetic gains. In this study, 17 years of historical data from IRRI’s rice drought breeding program was used to estimate the genetic trends and assess the breeding program's success. We also identified top-performing lines based on grain yield breeding values as an elite panel for implementing future population improvement-based breeding schemes. A two-stage approach of pedigree-based mixed model analysis was used to analyze the data and extract the breeding values and estimate the genetic trends for grain yield under non-stress, drought, and in combined data of non-stress and drought. Lower grain yield values were observed in all the drought trials. Heritability for grain yield estimates ranged between 0.20 and 0.94 under the drought trials and 0.43–0.83 under non-stress trials. Under non-stress conditions, the genetic gain of 0.21% (10.22 kg/ha/year) for genotypes and 0.17% (7.90 kg/ha/year) for checks was observed. The genetic trend under drought conditions exhibited a positive trend with the genetic gain of 0.13% (2.29 kg/ha/year) for genotypes and 0.55% (9.52 kg/ha/year) for checks. For combined analysis showed a genetic gain of 0.27% (8.32 kg/ha/year) for genotypes and 0.60% (13.69 kg/ha/year) for checks was observed. For elite panel selection, 200 promising lines were selected based on higher breeding values for grain yield and prediction accuracy of > 0.40. The breeding values of the 200 genotypes formulating the core panel ranged between 2366.17 and 4622.59 (kg/ha). A positive genetic rate was observed under all the three conditions; however, the rate of increase was lower than the required rate of 1.5% genetic gain. We propose a recurrent selection breeding strategy within the elite population with the integration of modern tools and technologies to boost the genetic gains in IRRI’s drought breeding program. The elite breeding panel identified in this study forms an easily available and highly enriched genetic resource for future recurrent selection programs to boost the genetic gains.
Background Developing a systematic phenotypic data analysis pipeline, creating enhanced visualizations, and interpreting the results is crucial to extract meaningful insights from data in making better breeding decisions. Here, we provide an overview of how the Rainfed Rice Breeding (RRB) program at IRRI has leveraged R computational power with open-source resource tools like R Markdown, plotly, LaTeX, and HTML to develop an open-source and end-to-end data analysis workflow and pipeline, and re-designed it to a reproducible document for better interpretations, visualizations and easy sharing with collaborators. Results We reported the state-of-the-art implementation of the phenotypic data analysis pipeline and workflow embedded into a well-descriptive document. The developed analytical pipeline is open-source, demonstrating how to analyze the phenotypic data in crop breeding programs with step-by-step instructions. The analysis pipeline shows how to pre-process and check the quality of phenotypic data, perform robust data analysis using modern statistical tools and approaches, and convert it into a reproducible document. Explanatory text with R codes, outputs either in text, tables, or graphics, and interpretation of results are integrated into the unified document. The analysis is highly reproducible and can be regenerated at any time. The analytical pipeline source codes and demo data are available at https://github.com/whussain2/Analysis-pipeline. Conclusion The analysis workflow and document presented are not limited to IRRI’s RRB program but are applicable to any organization or institute with full-fledged breeding programs. We believe this is a great initiative to modernize the data analysis of IRRI’s RRB program. Further, this pipeline can be easily implemented by plant breeders or researchers, helping and guiding them in analyzing the breeding trials data in the best possible way.
Prediction models based on pedigree and/or molecular marker information are now an inextricable part of the crop breeding programs and have led to increased genetic gains in many crops. Optimization of IRRI’s rice drought breeding program is crucial for better implementation of selections based on predictions. Historical datasets with precise and robust pedigree information have been a great resource to help optimize the prediction models in the breeding programs. Here, we leveraged 17 years of historical drought data along with the pedigree information to predict the new lines or environments and dissect the G × E interactions. Seven models ranging from basic to proposed higher advanced models incorporating interactions, and genotypic specific effects were used. These models were tested with three cross-validation schemes (CV1, CV2, and CV0) to assess the predictive ability of tested and untested lines in already observed environments and tested lines in novel or new environments. In general, the highest prediction abilities were obtained when the model accounting interactions between pedigrees (additive) and environment were included. The CV0 scheme (predicting unobserved or novel environments) reveals very low predictive abilities among the three schemes. CV1 and CV2 schemes that borrow information from the target and correlated environments have much higher predictive abilities. Further, predictive ability was lower when predicting lines in non-stress conditions using drought data as training set and/or vice-versa. When predicting the lines using the data sets under the same conditions (stress or non-stress data sets), much better prediction accuracy was obtained. These results provide conclusive evidence that modeling G × E interactions are important in predictions. Thus, considering G × E interactions would help to build enhanced genomic or pedigree-based prediction models in the rice breeding program. Further, it is crucial to borrow the correlated information from other environments to improve prediction accuracy.
Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. In this work, IRRIs historical data from the Philippines and Bangladesh of the salinity breeding program was used to estimate the genetic gains and identify the best lines based on higher breeding values for yield as a future genetic resource. Two-stage mixed-model approach accounting for experimental design factors and pedigrees was adopted to obtain the breeding values for yield and estimate genetic trends under the salinity conditions. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha for the Philippines and 0.31% per annum with a yield advantage of 14.02 kg/ha for Bangladesh datasets was observed. For the released varieties, genetic gain was 0.12% per annum with a yield advantage of 2.2 kg/ha/year and 0.14% per annum with a yield advantage of 5.9 kg/ha/year, respectively. Further, based on higher breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of >2400 kg/ha in the Philippines and >3500 kg/ha in Bangladesh with a selection accuracy >0.4 were selected for formulating the elite breeding panel as a future breeding resource. Conclusively, higher genetic gains are pivotal in IRRIs rice salinity breeding program, which requires a holistic breeding approach with a major paradigm shift in breeding strategies to enhance genetic gains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.