Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li1.17–xNi0.21Co0.08Mn0.54O2, these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by > 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.
The critical size limit of electric polarization remains a fundamental question in nanoscale ferroelectric research 1 . As such, the viability of ultrathin ferroelectricity greatly impacts emerging low-power logic and nonvolatile memories 2 . Size effects in ferroelectrics have been thoroughly investigated for perovskite oxides -the archetypal ferroelectric system 3 . Perovskites, however, have so far proved unsuitable for thickness-scaling and integration with modern semiconductor processes 4 . Here, we report ultrathin ferroelectricity in doped-HfO2, a fluorite-structure oxide grown by atomic layer deposition on silicon. We demonstrate the persistence of inversion symmetry breaking and spontaneous, switchable polarization down to 1 nm. Our results indicate not only the absence of a ferroelectric critical thickness, but also enhanced polar distortions as film thickness is reduced, contradictory to perovskite ferroelectrics. This work shifts the focus on the fundamental limits of ferroelectricity to simpler transition metal oxide systems -from perovskite-derived complex oxides to fluoritestructure binary oxides -in which 'reverse' size effects counter-intuitively stabilize polar symmetry in the ultrathin regime.Ferroelectric materials exhibit stable states of collectively ordered electrical dipoles whose polarization can be reversed under an applied electric field 5 . Consequently, ultrathin ferroelectrics are of great technological interest for high-density electronics, particularly field-effect transistors and nonvolatile memories 2 . However, ferroelectricity is typically suppressed at the few nanometer scale in the ubiquitous perovskite oxides 6 . First-principles calculations predict six unit cells as the critical thickness in perovskite ferroelectrics 1 due to incomplete screening of depolarization fields 3 . Atomic-scale ferroelectricity in perovskites often fail to demonstrate polarization switching 7,8 , a crucial ingredient for application. Furthermore, attempts to synthesize ferroelectric perovskite films on silicon 9,10 are plagued by chemical incompatibility 4,11 and high temperatures required for epitaxial growth. Since the discovery of ferroelectricity in HfO2-based thin films in 2011 12 , fluorite-structure binary oxides (fluorites) have attracted considerable interest 13 as they enable lowtemperature synthesis and conformal growth in three-dimensional (3D) structures on silicon 14,15 , thereby overcoming many of the issues that restrict its perovskite counterparts in terms of complementary metal-oxide-semiconductor (CMOS) compatibility and thickness scaling 16 .
Surface structural transitions and active sites are identified using X-ray scattering and density functional theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.