Catalysts for chemical and electrochemical reactions underpin many aspects of modern technology and industry, from energy storage and conversion to toxic emissions abatement to chemical and materials synthesis. This role necessitates the design of highly active, stable, yet earth-abundant heterogeneous catalysts. In this Review, we present the perovskite oxide family as a basis for developing such catalysts for (electro)chemical conversions spanning carbon, nitrogen, and oxygen chemistries. A framework for rationalizing activity trends and guiding perovskite oxide catalyst design is described, followed by illustrations of how a robust understanding of perovskite electronic structure provides fundamental insights into activity, stability, and mechanism in oxygen electrocatalysis. We conclude by outlining how these insights open experimental and computational opportunities to expand the compositional and chemical reaction space for next-generation perovskite catalysts.
Electrochemical energy storage by making H2 an energy carrier from water splitting relies on four elementary reactions, i.e., the hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Herein, the central objective is to recommend systematic protocols for activity measurements of these four reactions and benchmark activities for comparison, which is critical to facilitate the research and development of catalysts with high activity and stability. Details for the electrochemical cell setup, measurements, and data analysis used to quantify the kinetics of the HER, HOR, OER, and ORR in acidic and basic solutions are provided, and examples of state‐of‐the‐art specific and mass activity of catalysts to date are given. First, the experimental setup is discussed to provide common guidelines for these reactions, including the cell design, reference electrode selection, counter electrode concerns, and working electrode preparation. Second, experimental protocols, including data collection and processing such as ohmic‐ and background‐correction and catalyst surface area estimation, and practice for testing and comparing different classes of catalysts are recommended. Lastly, the specific and mass activity activities of some state‐of‐the‐art catalysts are benchmarked to facilitate the comparison of catalyst activity for these four reactions across different laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.