Skeletal muscle injury resulting in tissue loss poses unique challenges for surgical repair. Despite the regenerative potential of skeletal muscle, if a significant amount of tissue is lost, skeletal myofibers will not grow to fill the injured area completely. Prior work in our lab has shown the potential to fill the void with an extracellular matrix (ECM) scaffold, resulting in restoration of morphology, but not functional recovery. To improve the functional outcome of the injured muscle, a muscle-derived ECM was implanted into a 1 x 1 cm(2), full-thickness defect in the lateral gastrocnemius (LGAS) of Lewis rats. Seven days later, bone-marrow-derived mesenchymal stem cells (MSCs) were injected directly into the implanted ECM. Partial functional recovery occurred over the course of 42 days when the LGAS was repaired with an MSC-seeded ECM producing 85.4 +/- 3.6% of the contralateral LGAS. This was significantly higher than earlier recovery time points (p < 0.05). The specific tension returned to 94 +/- 9% of the contralateral limb. The implanted MSC-seeded ECM had more blood vessels and regenerating skeletal myofibers than the ECM without cells (p < 0.05). The data suggest that the repair of a skeletal muscle defect injury by the implantation of a muscle-derived ECM seeded with MSCs can improve functional recovery after 42 days.
Ischemia/reperfusion (I/R) injury is a considerable insult to skeletal muscle, often resulting in prolonged functional deficits. The purpose of the current study was to evaluate the controlled release of the pro-regenerative growth factor, insulin-like growth factor-I (IGF-I), from a biodegradable polyethylene glycol (PEG)ylated fibrin gel matrix and the subsequent recovery of skeletal muscle from I/R. To accomplish this, the hind limbs of male Sprague–Dawley rats were subjected to 2-h tourniquet-induced I/R then treated with saline, bolus IGF-I (bIGF), PEGylated fibrin gel (PEG-Fib), or IGF-I conjugated PEGy-lated fibrin gel (PEG-Fib-IGF). Functional and histological evaluations were performed following 14 days of reperfusion, and muscles from 4-day reperfusion animals were analyzed by Western blotting and histological assessments. There was no difference in functional recovery between saline, bIGF, or PEG-Fib groups. However, PEG-Fib-IGF treatment resulted in significant improvement of muscle function and structure, as observed histologically. Activation of the PI3K/Akt pathway was significantly elevated in PEG-Fib-IGF muscles, compared to PEG-Fib treatment, at 4 days of reperfusion, suggesting involvement of the pathway PI3K/Akt as a mediator of the improved function. Surprisingly, myoblast activity was not evident as a result of PEG-Fib-IGF treatment. Taken together, these data give evidence for a protective role for the delivered IGF. These results indicate that PEG-Fib-IGF is a viable therapeutic technique in the treatment of skeletal muscle I/R injury.
Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is a dramatic neuromuscular disease in which crippling muscle weakness is evident from birth. Here, we use the dyW mouse model for human MDC1A to trace the onset of the disease during development in utero. We find that myotomal and primary myogenesis proceed normally in homozygous dyW-/- embryos. Fetal dyW-/- muscles display the same number of myofibers as wildtype (WT) muscles, but by E18.5 dyW-/- muscles are significantly smaller and muscle size is not recovered post-natally. These results suggest that fetal dyW-/- myofibers fail to grow at the same rate as WT myofibers. Consistent with this hypothesis between E17.5 and E18.5 dyW-/- muscles display a dramatic drop in the number of Pax7- and myogenin-positive cells relative to WT muscles, suggesting that dyW-/- muscles fail to generate enough muscle cells to sustain fetal myofiber growth. Gene expression analysis of dyW-/- E17.5 muscles identified a significant increase in the expression of the JAK-STAT target gene Pim1 and muscles from 2-day and 3-week old dyW-/- mice demonstrate a dramatic increase in pSTAT3 relative to WT muscles. Interestingly, myotubes lacking integrin α7β1, a laminin-receptor, also show a significant increase in pSTAT3 levels compared with WT myotubes, indicating that α7β1 can act as a negative regulator of STAT3 activity. Our data reveal for the first time that dyW-/- mice exhibit a myogenesis defect already in utero. We propose that overactivation of JAK-STAT signaling is part of the mechanism underlying disease onset and progression in dyW-/- mice.
SUMMARYDuchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which there is no cure and limited treatment options. Prednisone is currently the first line treatment option for DMD and studies have demonstrated that it improves muscle strength. Although prednisone has been used for the treatment of DMD for decades, the mechanism of action of this drug remains unclear. Recent studies have shown that the α7β1 integrin is a major modifier of disease progression in mouse models of DMD and is therefore a target for drug-based therapies. In this study we examined whether prednisone increased α7β1 integrin levels in mdx mouse and GRMD dog models and myogenic cells from humans with DMD. Our results show that prednisone promotes an increase in α7 integrin protein in cultured myogenic cells and in the muscle of mdx and GRMD animal models of DMD. The prednisone-mediated increase in α7 integrin was associated with increased laminin-α2 in prednisone-treated dystrophin-deficient muscle. Together, our results suggest that prednisone acts in part through increased merosin in the muscle basal lamina and through sarcolemmal stabilization of α7β1 integrin in dystrophin-deficient muscle. These results indicate that therapies that target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin could be therapeutic in DMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.