The fact that people freely express their opinions and ideas in no more than 140 characters makes Twitter one of the most prevalent social networking websites in the world. Being popular in Saudi Arabia, we believe that tweets are a good source to capture the public’s sentiment, especially since the country is in a fractious region. Going over the challenges and the difficulties that the Arabic tweets present – using Saudi Arabia as a basis – we propose our solution. A typical problem is the practice of tweeting in dialectical Arabic. Based on our observation we recommend a hybrid approach that combines semantic orientation and machine learning techniques. Through this approach, the lexical-based classifier will label the training data, a time-consuming task often prepared manually. The output of the lexical classifier will be used as training data for the SVM machine learning classifier. The experiments show that our hybrid approach improved the F-measure of the lexical classifier by 5.76% while the accuracy jumped by 16.41%, achieving an overall F-measure and accuracy of 84 and 84.01% respectively.
In Modern Standard Arabic texts are typically written without diacritical markings. The diacritics are important to clarify the sense and meaning of words. Lack of these markings may lead to ambiguity even for the natives. Often the natives successfully disambiguate the meaning through the context; however, many Arabic applications, such as machine translation, text-to-speech, and information retrieval, are vulnerable due to lack of diacritics. The process of automatically restoring diacritical marks is called diacritization or diacritic restoration. In this paper we discuss the properties of the Arabic language and the issues that are related to the lack of the diacritical marking. It will be followed by a survey of the recent algorithms that were developed to solve the diacritization problem. We also look into the future trend for researchers working in this area.
Document classification is a classical problem in information retrieval, and plays an important role in a variety of applications. Automatic document classification can be defined as content-based assignment of one or more predefined categories to documents. Many algorithms have been proposed and implemented to solve this problem in general, however, classifying Arabic documents is lagging behind similar works in other languages. In this paper, we present seven deep learning-based algorithms to classify the Arabic documents. These are: Convolutional Neural Network (CNN), CNN-LSTM (LSTM = Long Short-Term Memory), CNN-GRU (GRU = Gated Recurrent Units), BiLSTM (Bidirectional LSTM), BiGRU, Att-LSTM (Attention-based LSTM), and Att-GRU. And for word representation, we applied the word embedding technique (Word2Vec). We tested our approach on two large datasets-with six and eight categories-using ten-fold cross-validation. Our objective was to study how the classification is affected by the stemming strategies and word embedding. First, we looked into the effects of different stemming algorithms on the document classification with different deep learning models. We experimented with eleven different stemming algorithms, broadly falling into: root-based and stem-based, and no stemming. We performed ANOVA test on the classification results using the different stemmers, which helps assure if the results are significant. The results of our study indicate that stem-based algorithms perform slightly better compared to root-based algorithms. Among the deep learning models, the Attention mechanism and the Bidirectional learning gave outstanding performance with Arabic text categorization. Our best performance is F -score = 97.96%, achieved using the Att-GRU model with stem-based algorithm. Next, we looked into different controlling parameters for word embedding. For Word2Vec, both skip-gram and bag-of-words (CBOW) perform well with either stemming strategies. However, when using a stem-based algorithm, skipgram achieves good results with a vector of smaller dimension, while CBOW requires a larger dimension vector to achieve a similar performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.