<abstract> <p>A stable colloid called ferrofluid is made up of tiny magnetic particles, often magnetite (Fe<sub>3</sub>O<sub>4</sub>), that have been bonded with an amphiphilic dispersion layer and are then suspended in a suitable liquid solvent carrier. Current industrial uses for ferrofluid include dynamic sealing, inertial and viscous damping, magnetic drug targeting, liquid microrobots, etc. In this article, we studied the heat transfer and MHD micropolar ferrofluid flow caused by non-linearly stretching surface. The results are presented for hybrid alumina- copper/ethylene glycol (${Al}_2 {O}_3$-Cu/EG) nanofluid. The governing non-linear equations describing flow are transformed into a system of ordinary differential equations using similarity transformations. Using the BVp4c method, the microstructure and inertial properties of a magnetite ferrofluid across a non-linear stretched sheet are studied. The influence of relevant parameters on stream function, velocity, micro-rotation velocity, and temperature are obtained and represented graphically. The computed results are original, and it has been observed that if we increase the magnetic parameter, the stream function and the velocity decrease, while the temperature and micro-rotation velocity increase. As the Prandtl number increases, the temperature profile decreases. It has been observed that the Nusselt number or heat transfer rate of hybrid nanofluid is better as compared to nanofluid flow.</p> </abstract>
Under the influence of an alternating magnetic field, flow and heat transfer of a ferrofluid flow over a flexible revolving disc are examined. The flow is hampered by the external magnetic field, which is dependent on the alternating magnetic field's frequency. The current work examines the heat transfer and three-dimensional flow of fluid with high viscosity on a spinning disc that is stretched in a radial direction. The governing equations' symmetries are computed using Lie group theory. In the problem, there is a resemblance that can accomplish with radially stretching velocities divided into two categories, specifically, linear and power-law, by imposing limits from the boundary conditions. The literature has already covered linear stretching, but this is the first discussion of power-law stretching. The governing partial differential is turned into an ordinary differential equations system using additional similarity transformations, which are then numerically handled. The results are presented for hybrid alumina–copper/ethylene glycol ($${\text{Al}}_{2} {\text{O}}_{3} - {\text{Cu}}/{\text{EG}}$$ Al 2 O 3 - Cu / EG ) nanofluid. The calculated findings are novel, and it has been seen that they accord quite well with those of the earlier extended literature. It has been found that hybrid nanofluid flow outperforms nanofluid flow in terms of Nusselt number or heat transfer rate. The heat transmission in the fluid is reduced as the Prandtl number is increased. The heat transfer increases as dimensionless magnetic field intensity $$\xi$$ ξ increases. Also, axial velocity and radial velocity decrease as magnetic field intensity increases. As the ferromagnetic interaction parameter is raised, the efficiency of heat transmission decreased. For non-linear stretching with stretching parameter 0 < m < 1, the velocity decreases with the increase in m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.