Salivary mucins MG1 and MG2 have been found in the oral cavity where they perform several functions such as the formation of the mucous layer covering the oral mucosa and teeth. Recent studies have demonstrated their presence in other organs and tissues. The aim of this study was to determine their expression in human bulbourethral (Cowper's) glands. Normal bulbourethral glands were obtained at surgery and fixed in a mixture of 1% paraformaldehyde-1.25% glutaraldehyde in 0.1 M cacodylate buffer and embedded in Epon resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N-terminal synthetic peptide of MG2, followed by gold-labeled goat anti-rabbit IgG. The granules of all mucous cells were intensely reactive with anti-MG1, whereas no labeling was detected for MG2. These results indicate that MG1 is not exclusively a salivary component and furthermore show that bulbourethral glands represent a significant source of the MG1 detected in human seminal plasma.
In mammalian species, cyclic AMP receptor proteins (cARP) are the regulatory (R) subunits of cyclic AMP-dependent protein kinase (PKA), the cellular effector of cyclic AMP-mediated signal transduction. An isoform of the PKA type II R subunit (RII), cARP, is a polyfunctional protein, present in most tissues and cells. It is expressed in salivary and other glands of rodents, and secreted into the saliva of rats and Man. The aim of the present study was to determine the expression of cARP in human salivary glands using immunoelectron microscopy. Thin sections of normal salivary glands embedded in LR Gold resin were labeled with anti-cARP primary antibody, then with gold-conjugated secondary antibody. Labeling was present in the secretory granules and cytoplasm of parotid, submandibular (SMG) and sublingual gland serous cells. Quantitative analysis showed considerable variability in granule labeling from sample to sample, indicating shifts in expression and cellular location of cARP. Unlike rodent salivary glands, the granules of intercalated and striated duct cells also were labeled. The cytoplasm and granules of mucous cells of the SMG and sublingual glands were unlabeled, while the Golgi complex and filamentous bodies in these cells showed moderate reactivity. Mitochondria and nuclei of both serous and mucous cells were unlabeled. Labeling also was present in the connective tissue adjacent to the epithelial cells. The results indicate that serous cells of the parotid and SMG are the major source of salivary cARP. They also reveal significant species differences in the glandular distribution of RII. RII binds to cytoskeletal and nuclear proteins, and may function to regulate extracellular cyclic AMP levels. Thus, the tissue and cellular distribution of RII may serve as an index of regulation of gene expression and cell differentiation.
We report here for the first time a morphological description and observations on some of the secretory proteins of the von Ebner's lingual salivary glands (VEG) of the Syrian hamster. Hamster VEG were macroscopically less distinct, but histologically similar to rat VEG. VEG extracts of hamster and rat were assayed for lipase, alpha-amylase and peroxidase activities. Unlike rat VEG, which is rich in lipase activity, hamster VEG extract had no detectable lipase activity and did not react with antibodies to either rat lingual lipase or human gastric lipase in Western blots. Immunohistochemical reactions with the anti-rat lingual lipase antibody were very weak in hamster VEG and strong in rat VEG. Moderate alpha-amylase enzyme activities and immunohistochemical reactions were demonstrated in both hamster and rat VEG. Peroxidase activity was negligible in the VEG, unlike the high activity in the submandibular glands of both species. An 18 kDa von Ebner's gland protein (VEGP), a member of the lipocalin superfamily of hydrophobic ligandbinding proteins, was abundant in rat VEG, but not detected in hamster VEG. Thus, hamster VEG differs from rat VEG in macroscopic appearance and the absence of lipase and VEGP. It is similar to rat VEG histologically and with regard to the presence of alpha-amylase and absence of peroxidase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.