BackgroundAt the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as ‘microscopic’ reduced-scattering coefficient, ), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species.ResultsHere we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low- corals bleach at higher rate and severity than high- corals and the Symbiodinium associated with low- corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low- corals.ConclusionsWhile symbionts associated with low- corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes as one of the key determinants of differential bleaching response.Electronic supplementary materialThe online version of this article (doi:10.1186/s12898-016-0061-4) contains supplementary material, which is available to authorized users.
Tissue transglutaminase (TG2) is a multifunctional protein with enzymatic, GTP-ase, and scaffold properties. TG2 interacts with fibronectin (FN) through its N-terminus domain, stabilizing integrin complexes, which regulate cell adhesion to the matrix. Through this mechanism, TG2 participates in key steps involved in metastasis in ovarian and other cancers. High-throughput screening identified several small molecule inhibitors (SMI) for the TG2/FN complex. Rational medicinal chemistry optimization of the hit compound (TG53) led to second-generation analogues (MT1-6). ELISA demonstrated that these analogues blocked TG2/FN interaction, and bio-layer interferometry (BLI) showed that the SMIs bound to TG2. The compounds also potently inhibited cancer cell adhesion to FN and decreased outside-in signaling mediated through the focal adhesion kinase. Blockade of TG2/FN interaction by the small molecules caused membrane ruffling, delaying the formation of stable focal contacts and mature adhesions points and disrupted organization of the actin cytoskeleton. In an in vivo model measuring intraperitoneal dissemination, MT4 and MT6 inhibited the adhesion of ovarian cancer cells to the peritoneum. Pretreatment with MT4 also sensitized ovarian cancer cells to paclitaxel. The data support continued optimization of the new class of SMIs that block the TG2/FN complex at the interface between cancer cells and the tumor niche.
The hemicellulose xylan constitutes a major portion of plant biomass, a renewable feedstock available for conversion to biofuels and other bioproducts. β-xylosidase operates in the deconstruction of the polysaccharide to fermentable sugars. Glycoside hydrolase family 43 is recognized as a source of highly active β-xylosidases, some of which could have practical applications. The biochemical details of four GH43 β-xylosidases (those from Alkaliphilus metalliredigens QYMF, Bacillus pumilus, Bacillus subtilis subsp. subtilis str. 168, and Lactobacillus brevis ATCC 367) are examined here. Sedimentation equilibrium experiments indicate that the quaternary states of three of the enzymes are mixtures of monomers and homodimers (B. pumilus) or mixtures of homodimers and homotetramers (B. subtilis and L. brevis). k cat and k cat/K m values of the four enzymes are higher for xylobiose than for xylotriose, suggesting that the enzyme active sites comprise two subsites, as has been demonstrated by the X-ray structures of other GH43 β-xylosidases. The K i values for D-glucose (83.3-357 mM) and D-xylose (15.6-70.0 mM) of the four enzymes are moderately high. The four enzymes display good temperature (K t (0.5) ∼ 45 °C) and pH stabilities (>4.6 to <10.3). At pH 6.0 and 25 °C, the enzyme from L. brevis ATCC 367 displays the highest reported k cat and k cat/K m on natural substrates xylobiose (407 s(-1), 138 s(-1) mM(-1)), xylotriose (235 s(-1), 80.8 s(-1) mM(-1)), and xylotetraose (146 s(-1), 32.6 s(-1) mM(-1)).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.