SUMMARY Worldwide, acute and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knock-down in Drosophila, we report a global screen for an innate behavior and identify hundreds of novel genes implicated in heat nociception, including the α2δ-family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain evoked signals from the thalamus to higher order pain centers. Intriguingly, in α2δ3 mutant mice thermal pain and tactile stimulation triggered strong cross-activation or synesthesia of brain regions involved in vision, olfaction, and hearing.
Apelin constitutes a novel endogenous peptide system suggested to be involved in a broad range of physiological functions, including cardiovascular function, heart development, control of fluid homeostasis, and obesity. Apelin is also a catalytic substrate for angiotensin-converting enzyme 2, the key severe acute respiratory syndrome receptor. The in vivo physiological role of Apelin is still elusive. Here we report the generation of Apelin gene-targeted mice. Apelin mutant mice are viable and fertile, appear healthy, and exhibit normal body weight, water and food intake, heart rates, and heart morphology. Intriguingly, aged Apelin knockout mice developed progressive impairment of cardiac contractility associated with systolic dysfunction in the absence of histological abnormalities. We also report that pressure overload induces upregulation of Apelin expression in the heart. Importantly, in pressure overload-induced heart failure, loss of Apelin did not significantly affect the hypertrophy response, but Apelin mutant mice developed progressive heart failure. Global gene expression arrays and hierarchical clustering of differentially expressed genes in hearts of banded Apelin(-/y) and Apelin(+/y) mice showed concerted upregulation of genes involved in extracellular matrix remodeling and muscle contraction. These genetic data show that the endogenous peptide Apelin is crucial to maintain cardiac contractility in pressure overload and aging.
Abstract. Microtubule-associated proteins such as MAP1B have long been suspected to play an important role in neuronal differentiation, but proof has been lacking. Previous MAP1B gene targeting studies yielded contradictory and inconclusive results and did not reveal MAP1B function. In contrast to two earlier efforts, we now describe generation of a complete MAP1B null allele. Mice heterozygous for this MAP1B deletion were not affected. Homozygous mutants were viable but displayed a striking developmental defect in the brain, the selective absence of the corpus callosum, and the concomitant formation of myelinated fiber bundles consisting of misguided cortical axons. In addition, peripheral nerves of MAP1B-deficient mice had a reduced number of large myelinated axons. The myelin sheaths of the remaining axons were of reduced thickness, resulting in a decrease of nerve conduction velocity in the adult sciatic nerve. On the other hand, the anticipated involvement of MAP1B in retinal development and ␥ -aminobutyric acid C receptor clustering was not substantiated. Our results demonstrate an essential role of MAP1B in development and function of the nervous system and resolve a previous controversy over its importance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.