Since December 2019, the world has witnessed the stringent effect of an unprecedented global pandemic, coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of January 29, 2021, there have been 100, 819, 363 confirmed cases and 2, 176, 159 deaths reported. Among the countries affected severely by COVID-19, the United States tops the list. Research has been conducted to discuss the causal associations between explanatory factors and COVID-19 transmission in contiguous United States. However, most of these studies focus more on spatial associations of the estimated parameters, yet exploring the time-varying dimension in spatial econometric modeling has appears to be utmost essential. This research adopts various relevant approaches to explore the potential effects of driving factors on COVID-19 counts in the contiguous United States. A total of three global spatial regression models and two local spatial regression models, the latter including geographically weighted regression (GWR) and multiscale GWR (MGWR), are performed at the county scale to take into account the scale effects. For COVID-19 cases, ethnicity, crime, and income factors are found to be the strongest covariates and explain most of the variance of modeling estimation. For COVID-19 deaths, migration (domestic and international) and income factors play a critical role in explaining spatial differences of COVID-19 deaths across counties. Such associations also exhibit temporal variations from March to July, as supported by better performance of MGWR than GWR. Both global and local associations among the parameters vary highly over space and change across time. Therefore, time dimension should be paid more attention to the spatial epidemiological analysis. Among the two local spatial regression models, MGWR performs more accurately, as it has slightly higher Adj. R 2 values (for cases, R 2 = 0.961; for deaths, R 2 = 0.962), compared to GWR’s Adj. R 2 values (for cases, R 2 = 0.954; for deaths, R 2 = 0.954). To inform policy-makers at the nation and state levels, understanding the place-based characteristics of the explanatory forces and related spatial patterns of the driving factors is of paramount importance. Since COVID-19 is not the first time we are facing public health emergency, the findings of the present research therefore could be used as a reference for policy designing and effective decision making.
Coronavirus disease, a novel severe acute respiratory syndrome (SARS COVID-19), has become a global health concern due to its unpredictable nature and lack of adequate medicines. Machine Learning (ML) models could be effective in identifying the most critical factors which are responsible for the overall fatalities caused by COVID-19. The functional capabilities of ML models in epidemiological research, especially for COVID-19, are not substantially explored. To bridge this gap, this study has adopted two advanced ML models, viz. Random Forest (RF) and Gradient Boosted Machine (GBM), to perform the regression modelling and provide subsequent interpretation. Five successive steps were followed to carry out the analysis: (1) identification of relevant key explanatory variables; (2) application of data dimensionality reduction for eliminating redundant information; (3) utilizing ML models for measuring relative influence (RI) of the explanatory variables; (4) evaluating interconnections between and among the key explanatory variables and COVID-19 case and death counts; (5) time series analysis for examining the rate of incidences of COVID-19 cases and deaths. Among the explanatory variables considered in this study, air pollution, migration, economy, and demographic factor were found to be the most significant controlling factors. Since a very limited research is available to discuss the superiority of ML models for identifying the key determinants of COVID-19, this study could be a reference for future public health research. Additionally, all the models and data used in this study are open source and freely available, thereby, reproducibility and scientific replication will be achievable easily.
Forest fires impact on soil, water, and biota resources. The current forest fires in the West Coast of the United States (US) profoundly impacted the atmosphere and air quality across the ecosystems and have caused severe environmental and public health burdens. Forest fire led emissions could significantly exacerbate the air pollution level and, therefore, could play a critical role if the same occurs together with any epidemic and pandemic health crisis. Limited research is done so far to examine its impact in connection to the current pandemic. As of October 21, nearly 8.2 million acres of forest area were burned, with more than 25 casualties reported so far. In-situ air pollution data were utilized to examine the effects of the 2020 forest fire on atmosphere and coronavirus (COVID-19) casualties. The spatial-temporal concentrations of particulate matter (PM 2.5 and PM 10 ) and Nitrogen Dioxide (NO 2 ) were collected from August 1 to October 30 for 2020 (the fire year) and 2019 (the reference year). Both spatial (Multiscale Geographically Weighted Regression) and non-spatial (Negative Binomial Regression) analyses were performed to assess the adverse effects of fire emission on human health. The in-situ data-led measurements showed that the maximum increases in PM 2.5 , PM 10 , and NO 2 concentrations (μg/m 3 ) were clustered in the West Coastal fire-prone states during August 1 – October 30, 2020. The average concentration (μg/m 3 ) of particulate matter (PM 2.5 and PM 10 ) and NO 2 was increased in all the fire states severely affected by forest fires. The average PM 2.5 concentrations (μg/m 3 ) over the period were recorded as 7.9, 6.3, 5.5, and 5.2 for California, Colorado, Oregon, and Washington in 2019, increasing up to 24.9, 13.4, 25.0, and 17.0 in 2020. Both spatial and non-spatial regression models exhibited a statistically significant association between fire emission and COVID-19 incidents. Such association has been demonstrated robust and stable by a total of 30 models developed for analyzing the spatial non-stationary and local association. More in-depth research is needed to better understand the complex relationship between forest fire emission and human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.