Black Sigatoka is a disease that occurs in banana plantations worldwide. This disease is caused by the hemibiotrophic fungus Pseudocercospora fijiensis, whose infection results in a significant reduction in both product quality and yield. Therefore, detection and identification in the early stages of this pathogen in plants could help minimize losses, as well as prevent the spread of the disease to neighboring cultures. To achieve this, a highly sensitive SPR immunosensor was developed to detect P. fijiensis in real samples of leaf extracts in early stages of the disease. A polyclonal antibody (anti-HF1), produced against HF1 (cell wall protein of P. fijiensis) was covalently immobilized on a gold-coated chip via a mixed self-assembled monolayer (SAM) of alkanethiols using the EDC/NHS method. The analytical parameters of the biosensor were established, obtaining a limit of detection of 11.7 µg mL−1, a sensitivity of 0.0021 units of reflectance per ng mL−1 and a linear response range for the antigen from 39.1 to 122 µg mL−1. No matrix effects were observed during the measurements of real leaf banana extracts by the immunosensor. To the best of our knowledge, this is the first research into the development of an SPR biosensor for the detection of P. fijiensis, which demonstrates its potential as an alternative analytical tool for in-field monitoring of black Sigatoka disease.
The importance of the monitoring of thickness and rate deposition is indispensable for the fabrication of thin film sensors, such as SPR sensors. The sensitivity of SPR responses varies with the thickness of the film, as well as the linear range. Thus, in the present work, we presented an experimental study of the plasmonic response of Cr/Au thin films deposited onto glass slides by evaporation, based on both a rotation and no-rotation system. The results show that the thickness of the gold film varies from 240 to 620 Å, depending on the glass slide position. The SPR response curves obtained experimentally were compared with simulated plasmonic responses and different parameters such as resonance angle, and the depth, slope and half-width of the SPR curve were analysed.
Mezcal is a traditional Mexican spirit produced by distilling fermented agave, with a unique taste directly related to its volatile compound composition. Thus, the present research proposed the surface plasmon resonance (SPR) technique as a potential method to differentiate mezcals, studying several parameters at angular interrogations and at a fixed angle. The study evaluated eight mezcals from different agave species using SPR and gas chromatography-mass spectrometry (GC-MS). Despite the similarities in mezcal spirits corresponding to the same ethanol content and the same artisanal method, it was possible to obtain well-differentiated characteristics by SPR parameters, such as the width of the curve, the resonant angle, and reflectance intensities. Therefore, it was possible to demonstrate the potential use of the SPR technique as a rapid first approach to a screening test to differentiate types of spirits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.