In an optical lattice entropy and mass transport by first-order tunneling is much faster than spin transport via superexchange. Here we show that adding a constant force (tilt) suppresses first-order tunneling, but not spin transport, realizing new features for spin Hamiltonians. Suppression of the superfluid transition can stabilize larger systems with faster spin dynamics. For the first time in a many-body spin system, we vary superexchange rates by over a factor of 100 and tune spin-spin interactions via the tilt. In a tilted lattice, defects are immobile and pure spin dynamics can be studied.arXiv:1908.09870v1 [cond-mat.quant-gas]
We analyze a scheme for preparation of magnetically ordered states of two-component bosonic atoms in optical lattices. We compute the dynamics during adiabatic and optimized time-dependent ramps to produce ground states of effective spin Hamiltonians, and determine the robustness to decoherence for realistic experimental system sizes and timescales. Ramping parameters near a phase transition point in both effective spin-1/2 and spin-1 models produces entangled spin-symmetric states that have potential future applications in quantum enhanced measurement. The preparation of these states and their robustness to decoherence is quantified by computing the quantum Fisher information (QFI) of final states. We identify that the generation of useful entanglement should in general be more robust to heating than it would be implied by the state fidelity, with corresponding implications for practical applications.
Rapid advances in quantum technology have exacerbated the shortage of a diverse, inclusive, and sustainable quantum workforce. National governments and industries are developing strategies for education, training, and workforce development to accelerate the commercialization of quantum technologies. We report the existing state of the quantum workforce as well as several learning pathways to nurture the talent pipeline between academia and industry. We provide a comprehensive guide to various educational initiatives accessible throughout the world, such as online courses, conferences, seminars, games, and community-focused networks, that facilitate quantum training and upskill the talent needed to develop a better quantum future.
There is no doubt, we are entering the second quantum revolution. Every week some exciting news about quantum technologies appears in the media. Nowadays, several countries worldwide have initiated a quantum program to develop this emerging market. However, this will require having a highly trained and skilled workforce. How can society be ready when the time comes?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.