This article discusses the mechanical redesign of a finger rehabilitation device based on a slider-crank mechanism. The redesign proposal is to obtain a smaller and more portable device that can recreate the motion trajectories of a finger. The real finger motion trajectories were recorded using a motion capture system. The article focused on the optimal synthesis of the rehabilitation device mechanism formulated as a classic trajectory generation problem. The proposed approach was combined with the recorded finger movements and solved using the genetic algorithm (GA) method. Optimization criteria and constraints were successively formulated and solved using a mono-objective function.
The lack of specialized personnel and assistive technology to assist in rehabilitation therapies is one of the challenges facing the health sector today, and it is projected to increase. For researchers and engineers, it represents an opportunity to innovate and develop devices that improve and optimize rehabilitation services for the benefit of society. Among the different types of injuries, hand injuries occur most frequently. These injuries require a rehabilitation process in order for the hand to regain its functionality. This article presents the fabrication and instrumentation of an end-effector prototype, based on a five-bar configuration, for finger rehabilitation that executes a natural flexion-extension movement. The dimensions were obtained through the gradient method optimization and evaluated through Matlab. Experimental tests were carried out to demonstrate the prototype’s functionality and the effectiveness of a five-bar mechanism acting in a vertical plane, where gravity influences the mechanism’s performance. Position control using fifth-order polynomials with via points was implemented in the joint space. The design of the end-effector was also evaluated by performing a theoretical comparison, calculated as a function of a real flexion-extension trajectory of the fingers and the angle of rotation obtained through an IMU. As a result, controlling the two degrees of freedom of the mechanism at several points of the trajectory assures the end-effector trajectory and therefore the fingers’ range of motion, which helps for full patient recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.