Liu, Nussenzweig, and colleagues track the differentiation of human progenitor cells into dendritic cells (DCs). They show that a granulocyte/monocyte/DC progenitor gives rise to a monocyte-DC progenitor that in turn gives rise to both monocytes and a common DC progenitor. The common DC progenitor produces the three major subsets of human DCs.
The origin and specification of human dendritic cells (DCs) have not been investigated at clonal level. Using clonal assays combined with statistical computation to quantify the yield of granulocytes, monocytes, lymphocytes and three subsets of DCs from single human CD34+ progenitor cells, we show DC lineage specification occurs in parallel with myeloid and lymphoid lineages in HSCs, starting as a lineage bias defined by specific transcriptional programs correlated with the relative IRF8/PU.1 ratios, which is transmitted to most progeny and reinforced by FLT3L-driven IRF8 upregulation over division. We propose a model in which DC lineage specification is driven by parallel and inheritable transcriptional programs in HSCs, and reinforced over cell division by recursive interaction between transcriptional programs and extrinsic signals.
SUMMARYDuring class switch recombination (CSR), B cells replace the Igh Cμ or δ exons with another down-stream constant region exon (CH), altering the anti-body isotype. CSR occurs through the introduction of AID-mediated double-strand breaks (DSBs) in switch regions and subsequent ligation of broken ends. Here, we developed an assay to investigate the dynamics of DSB formation in individual cells. We demonstrate that the upstream switch region Sμ is first targeted during recombination and that the mechanism underlying this control relies on 53BP1. Surprisingly, regulation of break order occurs through residual binding of 53BP1 to chromatin before the introduction of damage and independent of its established role in DNA repair. Using chromosome conformation capture, we show that 53BP1 mediates changes in chromatin architecture that affect break order. Finally, our results explain how changes in Igh architecture in the absence of 53BP1 could promote inversional rearrangements that compromise CSR.
SUMMARY
Immunodeficiency is one of the most important causes of mortality associated to Wolf-Hirschhorn Syndrome (WHS), a severe rare disease originated by a deletion in chromosome 4p. The WHS candidate 1 (WHSC1) gene has been proposed as one of the main responsible for many of the alterations in WHS, but its mechanism of action is still unknown. Here, we present in vivo genetic evidence showing that Whsc1 plays an important role at several points of hematopoietic development. Particularly, our results demonstrate that both differentiation and function of Whsc1-deficient B cells are impaired at several key developmental stages due to profound molecular defects affecting B cell lineage specification, commitment, fitness and proliferation, therefore demonstrating a causal role for WHSC1 in the immunodeficiency of WHS patients.
Different dendritic cell (DC) subsets co-exist in humans and coordinate the immune response. Having a short life, DCs must be constantly replenished from their progenitors in the bone marrow through hematopoiesis. Identification of a DC-restricted progenitor in mouse has improved our understanding of how DC lineage diverges from myeloid and lymphoid lineages. However, identification of the DC-restricted progenitor in humans has not been possible because a system that simultaneously nurtures differentiation of human DCs, myeloid and lymphoid cells, is lacking. Here we report a cytokine and stromal cell culture that allows evaluation of CD34+ progenitor potential to all three DC subsets as well as other myeloid and lymphoid cells, at a single cell level. Using this system, we show that human granulocyte–macrophage progenitors are heterogeneous and contain restricted progenitors to DCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.