The experiment was performed in support of a Japanese initiative to investigate the biological effects of irradiation from residual neutron-activated radioactivity that resulted from the A-bombing. Radionuclide 56Mn (T1/2 = 2.58 h) is one of the main neutron-activated emitters during the first hours after neutron activation of soil dust particles. In our previous studies (2016–2017) related to irradiation of male Wistar rats after dispersion of 56MnO2 powder, the internal doses in rats were found to be very inhomogeneous: distribution of doses among different organs ranged from 1.3 Gy in small intestine to less than 0.0015 Gy in some of the other organs. Internal doses in the lungs ranged from 0.03 to 0.1 Gy. The essential pathological changes were found in lung tissue of rats despite a low level of irradiation. In the present study, the dosimetry investigations were extended: internal doses in experimental mice and rats were estimated for various activity levels of dispersed neutron-activated 56MnO2 powder. The following findings were noted: (a) internal radiation doses in mice were several times higher in comparison with rats under similar conditions of exposure to 56MnO2 powder. (b) When 2.74 × 108 Bq of 56MnO2 powder was dispersed over mice, doses of internal irradiation ranged from 0.81 to 4.5 Gy in the gastrointestinal tract (small intestine, stomach, large intestine), from 0.096 to 0.14 Gy in lungs, and doses in skin and eyes ranged from 0.29 to 0.42 Gy and from 0.12 to 0.16 Gy, respectively. Internal radiation doses in other organs of mice were much lower. (c) Internal radiation doses were significantly lower in organs of rats with the same activity of exposure to 56MnO2 powder (2.74 × 108 Bq): 0.09, 0.17, 0.29, and 0.025 Gy in stomach, small intestine, large intestine, and lungs, respectively. (d) Doses of internal irradiation in organs of rats and mice were two to four times higher when they were exposed to 8.0 × 108 Bq of 56MnO2 (in comparison with exposure to 2.74 × 108 Bq of 56MnO2). (e) Internal radiation doses in organs of mice were 7–14 times lower with the lowest 56MnO2 amount (8.0 × 107 Bq) in comparison with the highest amount, 8.0 × 108 Bq, of dispersed 56MnO2 powder. The data obtained will be used for interpretation of biological effects in experimental mice and rats that result from dispersion of various levels of neutron-activated 56MnO2 powder, which is the subject of separate studies.
Aims and Scope Eurasian Journal of Medicine (Eurasian J Med) is an international, scientific, open access periodical published by independent, unbiased, and triple-blinded peer-review principles. The journal is the official publication of Atatürk University School of Medicine and published triannually in February, June, and October. The publication language of the journal is English. The aim of the Eurasian Journal of Medicine is to publish original research papers of the highest scientific and clinical value in all medical fields. The Eurasian J Med also includes reviews, editorial short notes and letters to the editor that either as a comment related to recently published articles in our journal or as a case report. The target audience of the journal includes researchers, physicians and healthcare professionals who are interested or working in in all medical disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.