Purpose Intra-articular administration of tranexamic acid (TXA) in orthopaedic arthroplasty and arthroscopic procedures has become increasingly common over the past decade. However, several recent reports have shown that TXA has the potential to be cytotoxic to cartilage, tendon and synovium. Our aim was to review the literature for evidence of toxic efects from TXA exposure to intra-articular tissue. Methods A scoping review methodology was used to search for studies assessing the toxic efects of TXA exposure to intra-articular tissues. MEDLINE, EMBASE, SCOPUS and The Cochrane Library were searched. Relevant information was extracted and synthesis of the retrieved data followed a basic content analytical approach. Results A total of 15 laboratory studies were retrieved. No clinical studies reporting a toxic efect of TXA on intra-articular tissue were identiied in our search. Studies were analysed according to species of origin, tissue of origin and study setting (in vitro, ex vivo, or in vivo). There was increasing cytotoxicity to chondrocytes, tenocytes, synoviocytes and periosteumderived cells with TXA concentrations beyond 20 mg/ml. Monolayer cell cultures appear more susceptible to TXA exposure, than three-dimensional and explant culture models. In vivo studies have not demonstrated a major toxic efect. Conclusions Current evidence suggests a dose-dependent toxic efect on cartilage, tendon, and synovial tissue. Concentrations of 20 mg/ml or less are expected to be safe. There is a signiicant body of evidence to suggest the need for caution with intraarticular administration of TXA. There is a need for further human clinical trials in order to clarify the long-term safety of TXA topical application. AbbreviationsTXA Tranexamic acid IV Intravenous PRISMA-ScR Preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews ECM Extracellular matrix 2D Two-dimensional 3D Three-dimensional LDH Lactate dehydrogenase
Introduction Tranexamic acid (TXA) has been shown to be effective at reducing peri-operative blood loss and haemarthrosis in arthroplasty and arthroscopic soft tissue reconstructions. Intra-articular application, as an injection or peri-articular wash, is becoming increasingly common. Recent studies have shown TXA has the potential to be cytotoxic to cartilage, but its effects on human tendon and bone remain poorly understood. The aim of this study was to investigate whether TXA has any detrimental effects on tendon-derived cells and osteoblast-like cells and determine whether there is a safe dosage for clinical application. Materials and methods Primary tendon-derived cells and osteoblast-like cells were harvested from hamstring tendons and trabecular bone explants, respectively, and analysed in vitro with a range of TXA concentrations (0 to 100 mg/ml) at time points: 3 and 24 h. The in vitro toxic effect of TXA was investigated using viability assays (alamarBlue), functional assays (collagen deposition), fluorescent microscopy and live/apoptosis/necrosis staining for cell death mechanisms in 2D monolayer and 3D collagen gel cell culture. Results There was a significant (P < 0.05) decrease in tendon-derived cell and osteoblast-like cell numbers following treatment with TXA ≥ 50 mg/ml after 3 h and ≥ 20 mg/ml after 24 h. In tendon-derived cells, increasing concentrations > 35 mg/ml resulted in significantly (P < 0.05) reduced collagen deposition. Fluorescence imaging confirmed atypical cellular morphologies with increasing TXA concentrations and reduced cell numbers. The mechanism of cell death was demonstrated to be occurring through apoptosis. Conclusions Topical TXA treatment demonstrated dose- and time-dependent cytotoxicity to tendon-derived cells and osteoblast-like cells with concentrations 20 mg/ml and above in isolated 2D and 3D in vitro culture. On the basis of these findings, concentrations of less than 20 mg/ml are expected to be safe. Orthopaedic surgeons should show caution when considering topical TXA treatments, particularly in soft tissue and un-cemented arthroplasty procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.