Self-assembly has proven to be a powerful tool for the construction of complex superstructures. The assembly of monomers into supramolecular architectures via non-covalent interactions is chiefly directed by the molecular structures, their functional groups, and environmental conditions. The principal advantage of non-covalent interactions is reversibility, which allows the assembly of monomers into supramolecular structures in situ depending on the local conditions. In addition, the supramolecular approach provides a degree of control over self-assembly at the molecular level, thereby influencing the macroscopic level and facilitating tuning of the bulk material properties. This review discusses the meritorious examples of supramolecular materials constructed through the molecular assembly process, guided by the classical principles of supramolecular chemistry. Furthermore, this year (2017) marks the 50 th anniversary of supramolecular chemistry in honor of the first example of supramolecular structure reported by Charles J. Pedersen and the achievements in the area of supramolecular chemistry ever since.
A Tröger’s base functionalized luminescent nanoscale Zn(II) coordination polymer (TB-Zn-CP) is synthesized and used as selective fluorescence sensor for phenolic nitroaromatics in water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.