Magnetic-activated cell sorting (MACS) can be used to separate apoptotic sperm with high proportions of fragmented DNA from the rest, thus improving the overall quality of the seminal sample. Therefore, the aim of this retrospective study was to investigate the efficiency of the MACS technique to increase reproductive outcomes in patients with high levels of sperm DNA fragmentation (SDF) undergoing intracytoplasmic sperm-injection (ICSI) cycles. In this study, we analyzed a total of 724 assisted-reproduction-technique (ART) cycles that were divided into two groups: the study group (n = 366) in which the MACS selection technique was performed after density-gradient centrifugation (DGC), and the control group (n = 358) in which only DGC was used for sperm selection. Reproductive outcomes were analyzed in both groups according to three different ART procedures: preimplantation genetic testing for aneuploidy (PGT-A), and autologous and oocyte-donation cycles. The MACS group showed significantly lower miscarriage rates in autologous ICSI cycles, higher pregnancy rates in oocyte-donation cycles, and a significant increase in live-birth rates in both autologous and oocyte-donation cycles. Overall, these results suggested that the MACS technique can be effectively used to eliminate sperm with high SDF levels, and therefore may help to improve reproductive outcomes in couples undergoing ART.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.