Coordination of N,N' bidentate ligands aryl-pyridin-2-ylmethyl-amine ArNH-CH2-2-C5H4N 1 (Ar = 4-CH3-C6H4, 1a; 4-CH3O-C6H4, 1b; 2,6-(CH3)2-C6H3, 1c; 4-CF3-C6H4, 1d) to the moieties [Ru(bipy)2]2+, [Ru(eta5-C5H5)L]+ (L = CH3CN, CO), or [Ru(eta6-arene)Cl]2+ (arene = benzene, p-cymene) occurs under diastereoselective or diastereospecific conditions. Detailed stereochemical analysis of the new complexes is included. The coordination of these secondary amine ligands activates their oxidation to imines by molecular oxygen in a base-catalyzed reaction and hydrogen peroxide was detected as byproduct. The amine-to-imine oxidation was also observed under the experimental conditions of cyclic voltammetry measurements. Deprotonation of the coordinated amine ligands afforded isolatable amido complexes only for the ligand (1-methyl-1-pyridin-2-yl-ethyl)-p-tolyl-amine, 1e, which doesn't contain hydrogen atoms in a beta position relative to the N-H bond. The structures of [Ru(2,2'-bipyridine)2(1b)](PF6)2, 2b; [Ru(2,2'-bipyridine)(2)(1c)](PF6)2, 2c; trans-[RuCl2(COD)(1a)], 3; and [RuCl2(eta6-C6H6)(1a)]PF6, 4a, have been confirmed by X-ray diffraction studies.
New cationic, half-sandwich Ru(II) arene compounds of general formula [(η(6)-arene)RuCl(κ(2)-N,N-L)]X (where L are functionalized phenanthrolines such as 1,10-phenanthroline-5-amine (aphen); 5,6-epoxy-5,6-dihydro-[1,10]phenanthroline (ephen); or 4,7-dihydroxy-1,10-phenanthroline (dhphen)) have been prepared to study their anticancer potential. All the isolated complexes have been fully characterized by spectroscopic and analytical techniques. The structure of endo-[(η(6)-p-cymene)RuCl(κ(2)-N,N-ephen)]BF4, [2a](BF4), has been determined by X-ray crystallography. The in vitro cytotoxicity of the aphen and ephen phenanthrolines and their Ru derivatives [(η(6)-p-cymene)RuCl(κ(2)-N,N-L)]Cl ([1a]Cl and [2a]Cl, respectively) assessed in tumour cell lines has shown that the free ligands are more active than the organometallic products, with aphen being the most potent specimen. Furthermore, the binding interaction of both [1a]Cl and aphen with calf thymus DNA (CT-DNA) has been investigated using a variety of thermodynamic and kinetic techniques. The aphen free ligand intercalates into DNA at low ligand content, whereas [1a]Cl forms with DNA a bifunctional partially intercalated-covalent complex, in which the intercalation constant is nearly three orders of magnitude lower than that of aphen. This finding demonstrates that the covalent binding noticeably weakens the intercalation, a feature presumably related to the higher cytotoxic activity of aphen relative to that of [1a]Cl.
The reaction of the complex [Pd(κ3‐NN′O)CH3] [NN′O = 2‐Py‐CH=N‐(o‐C6H4)O–] (1a) with nitromethane affords a mixture of 2a and 2b. In this reaction methylation of the ligand takes place. These complexes display exchange equilibrium in solution. The methylation reaction is proposed to occur through nucleophilic attack of the nitronate anion on the iminic carbon atom. DFT calculations are presented in order to support a part of the mechanism and these calculations show that the participation of water in the migration of a proton is important. The crystal structure of the derivative productafter spontaneous release of methane (3) is presented as well. Attempts to extend the reaction to other nitroalkanes resulted in a mixture of complexes that was not easy to characterize. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007)
Considering the interest in processes related to hydrogen storage such as CO2 hydrogenation and formic acid (FA) decomposition, we have synthesized a set of Ir, Rh, or Ru complexes to be tested as versatile precatalysts in these reactions. In relation with the formation of H2 from FA, the possible applicability of these complexes in the transfer hydrogenation (TH) of challenging substrates as quinoline derivatives using FA/formate as hydrogen donor has also been addressed. Bearing in mind the importance of secondary coordination sphere interactions, N,N′ ligands containing NH2 groups, coordinated or not to the metal center, were used. The general formula of the new complexes are [(p-cymene)RuCl(N,N′)]X, X = Cl–, BF4 – and [Cp*MCl(N,N′)]Cl, M = Rh, Ir, where the N,N′ ligands are 8-aminoquinoline (HL1), 6-pyridyl-2,4-diamine-1,3,5-triazine (L2) and 5-amino-1,10-phenanthroline (L3). Some complexes are not active or catalyze only one process. However, the complexes [Cp*MCl(HL1)]Cl with M = Rh, Ir are versatile catalysts that are active in hydrogenation of quinolines, FA decomposition, and also in CO2 hydrogenation with the iridium derivative being more active and robust. The CO2 hydrogenation takes place in mild conditions using only 5 bar of pressure of each gas (CO2 and H2). The behavior of some precatalysts in D2O and after the addition of 9 equiv of HCO2Na (pseudocatalytic conditions) has been studied in detail and mechanisms for the FA decomposition and the hydrogenation of CO2 have been proposed. For the Ru, Ir, or Rh complexes with ligand HL1, the amido species with the deprotonated ligand are observed. In the case of ruthenium, the formate complex is also detected. For the iridium derivative, both the amido intermediate and the hydrido species have been observed. This hydrido complex undergoes a process of umpolung D+↔ Ir–D. All in all, the results of this work reflect the active role of −NH2 in the transfer of H+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.