Background: Alzheimer’s is a degenerative dementing disorder that starts with a mild memory impairment and progresses to a total loss of mental and physical faculties. The sooner the diagnosis is made, the better for the patient, as preventive actions and treatment can be started. Although tests such as the Mini-Mental State Tests Examination are usually used for early identification, diagnosis relies on magnetic resonance imaging (MRI) brain analysis. Methods: Public initiatives such as the OASIS (Open Access Series of Imaging Studies) collection provide neuroimaging datasets openly available for research purposes. In this work, a new method based on deep learning and image processing techniques for MRI-based Alzheimer’s diagnosis is proposed and compared with previous literature works. Results: Our method achieves a balance accuracy (BAC) up to 0.93 for image-based automated diagnosis of the disease, and a BAC of 0.88 for the establishment of the disease stage (healthy tissue, very mild and severe stage). Conclusions: Results obtained surpassed the state-of-the-art proposals using the OASIS collection. This demonstrates that deep learning-based strategies are an effective tool for building a robust solution for Alzheimer’s-assisted diagnosis based on MRI data.
Plant fungal diseases are one of the most important causes of crop yield losses. Therefore, plant disease identification algorithms have been seen as a useful tool to detect them at early stages to mitigate their effects. Although deep-learning based algorithms can achieve high detection accuracies, they require large and manually annotated image datasets that is not always accessible, specially for rare and new diseases. This study focuses on the development of a plant disease detection algorithm and strategy requiring few plant images (Few-shot learning algorithm). We extend previous work by using a novel challenging dataset containing more than 100,000 images. This dataset includes images of leaves, panicles and stems of five different crops (barley, corn, rape seed, rice, and wheat) for a total of 17 different diseases, where each disease is shown at different disease stages. In this study, we propose a deep metric learning based method to extract latent space representations from plant diseases with just few images by means of a Siamese network and triplet loss function. This enhances previous methods that require a support dataset containing a high number of annotated images to perform metric learning and few-shot classification. The proposed method was compared over a traditional network that was trained with the cross-entropy loss function. Exhaustive experiments have been performed for validating and measuring the benefits of metric learning techniques over classical methods. Results show that the features extracted by the metric learning based approach present better discriminative and clustering properties. Davis-Bouldin index and Silhouette score values have shown that triplet loss network improves the clustering properties with respect to the categorical-cross entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and Silhouette score value by 166.7% compared to the categorical cross-entropy loss model. Moreover, the F-score parameter obtained from the Siamese network with the triplet loss performs better than classical approaches when there are few images for training, obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet loss have improved the ability to learn different plant diseases using few images of each class. These networks based on metric learning techniques improve clustering and classification results over traditional categorical cross-entropy loss networks for plant disease identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.