The huge number of autonomous and heterogeneous data repositories accessible on the "global information infrastructure" makes it impossible for users to be aware of the locations, structure/organization, query languages and semantics of the data in various repositories. There is a critical need to complement current browsing, navigational and information retrieval techniques with a strategy that focuses on information content and semantics. In any strategy that focuses on information content, the most critical problem is that of different vocabularies used to describe similar information across domains. We discuss a scalable approach for vocabulary sharing. The objects in the repositories are represented as intensional descriptions by pre-existing ontologies expressed in Description Logics characterizing information in different domains. User queries are rewritten by using interontology relationships to obtain semanticspreserving translations across the ontologies.
The new advances in sensor technology, personal digital assistants (PDAs), and wireless communications favor the development of a new type of monitoring system that can provide patients with assistance anywhere and at any time. Of particular interest are the monitoring systems designed for people that suffer from heart arrhythmias, due to the increasing number of people with cardiovascular diseases. PDAs can play a very important role in these kinds of systems because they are portable devices that can execute more and more complex tasks. The main questions answered in this paper are whether PDAs can perform a complete electrocardiogram beat and rhythm classifier, if the classifier has a good accuracy, and if they can do it in real time. In order to answer these questions, in this paper, we show the steps that we have followed to build the algorithm that classifies beats and rhythms, and the obtained results, which show a competitive accuracy. Moreover, we also show the feasibility of incorporating the built algorithm into the PDA.
Patients suspected of suffering sleep apnea and hypopnea syndrome (SAHS) have to undergo sleep studies such as expensive polysomnographies to be diagnosed. Healthcare professionals are constantly looking for ways to improve the ease of diagnosis and comfort for this kind of patients as well as reducing both the number of sleep studies they need to undergo and the waiting times. Relating to this scenario, some research proposals and commercial products are appearing, but all of them record the physiological data of patients to portable devices and, in the morning, these data are loaded into hospital computers where physicians analyze them by making use of specialized software. In this paper, we present an alternative proposal that promotes not only a transmission of physiological data but also a real-time analysis of these data locally at a mobile device. For that, we have built a classifier that provides an accuracy of 93% and a receiver operating characteristic-area under the curve (ROC-AUC) of 98.5% on SpO(2) signals available in the annotated Apnea-ECG Database. This local analysis allows the detection of anomalous situations as soon as they are generated. The classifier has been implemented taking into consideration the restricted resources of mobile devices.
Telerehabilitation systems that support physical therapy sessions anywhere can help save healthcare costs while also improving the quality of life of the users that need rehabilitation. The main contribution of this paper is to present, as a whole, all the features supported by the innovative Kinect-based Telerehabilitation System (KiReS). In addition to the functionalities provided by current systems, it handles two new ones that could be incorporated into them, in order to give a step forward towards a new generation of telerehabilitation systems. The knowledge extraction functionality handles knowledge about the physical therapy record of patients and treatment protocols described in an ontology, named TrhOnt, to select the adequate exercises for the rehabilitation of patients. The teleimmersion functionality provides a convenient, effective and user-friendly experience when performing the telerehabilitation, through a two-way real-time multimedia communication. The ontology contains about 2300 classes and 100 properties, and the system allows a reliable transmission of Kinect video depth, audio and skeleton data, being able to adapt to various network conditions. Moreover, the system has been tested with patients who suffered from shoulder disorders or total hip replacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.